liew et al
5. Mitsui S, Kobayashi S, Nagahori H, Ogiso A. Constituents from seeds
of Alpinia galanga Wild, and their anti-ulcer activities. Chem Pharm
Bull. 1976;24(10):2377–2382.
27. ItoK,NakazatoT,MurakamiA.Inductionofapoptosisinhumanmyeloid
leukemic cells by 1′-acetoxychavicol acetate through a mitochondrial-
and Fas mediated dual mechanism. Clin Cancer Res. 2004;10:
2120–2130.
28. Pang X, Zhang L, Lai L, et al. 1′-Acetoxychavicol acetate suppresses
angiogenesis-mediated human prostate tumor growth by targeting
VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcino-
genesis. 2011;32(6):904–912.
29. WangJ,ZhangL,ChenG,etal.Smallmolecule1′-acetoxychavicol acetate
suppressesbreasttumormetastasisbyregulatingtheSHP-1/STAT3/MMPs
signaling pathway. Breast Cancer Res Treat. 2014;148(2):279–289.
30. Nugoli M, Chuchana P, Vendrell J, et al. Genetic variability in MCF-7
sublines: evidence of rapid genomic and RNA expression profile modi-
fications. BMC Cancer. 2003;3(1):13.
31. Xu S, Kojima-Yuasa A, Azuma H, Kennedy DO, Konishi Y, Matsui-
Yuasa I. Comparison of glutathione reductase activity and the intracel-
lular glutathione reducing effects of 13 derivatives of 1′-acetoxychavicol
acetate in Ehrlich ascites tumor cells. Chem Biol Interact. 2010;185(3):
235–240.
32. Rouzier R, Perou CM, Symmans WF, et al. Breast cancer molecular
subtypes respond differently to preoperative chemotherapy. Clin Cancer
Res. 2005;11(16):5678–5685.
33. Zhang JH, Xu M. DNA fragmentation in apoptosis. Cell Res. 2000;
10(3):205–211.
34. Los M, Mozoluk M, Ferrari D, et al. Activation and caspase-mediated
inhibition of PARP: a molecular switch between fibroblast necrosis
and apoptosis in death receptor signaling. Mol Biol Cell. 2002;13(3):
978–988.
35. Moffatt J, Hashimoto M, Kojima A, et al. Apoptosis induced by
1′-acetoxychavicol acetate in Ehrlich ascites tumor cells is associated
with modulation of polyamine metabolism and caspase-3 activation.
Carcinogenesis. 2000;21(12):2151–2157.
6. Janssen AM, Scheffer JJ. Acetoxychavicol acetate, an antifungal com-
ponent of Alpinia galanga. Planta Med. 1985;51(6):507–511.
7. Noro T, Sekiya T, Katoh M, et al. Inhibitors of xanthine oxidase from
Alpinia galanga. Chem Pharm Bull. 1988;36(1):244–248.
8. Kondo A, Ohigashi H, Murakami A, Suratwadee J, Koshimizu K.
1′-Acetoxychavicolacetateasapotentinhibitoroftumorpromoter-induced
Epstein-Barr virus activation from Languas galanga, a traditional Thai
Condiment. Biosci Biotechnol Biochem. 1993;57(8):1344–1345.
9. Murakami A, Ohura S, Nakamura Y, Koshimizu K, Ohigashi H.
1′-Acetoxychavicol acetate, a superoxide anion generation inhibitor,
potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-
acetate in ICR mouse skin. Oncology. 1996;53(5):386–391.
10. Ohnishi M, Tanaka T, Makita H, et al. Chemopreventive effect of
a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate, on rat oral
carcinogenesis. Jpn J Cancer Res. 1996;87(4):349–356.
11. Tanaka T, Makita H, Kawamori T, et al. A xanthine oxidase inhibitor
1′-acetoxychavicol acetate inhibits azoxymethane-induced colonic
aberrant crypt foci in rats. Carcinogenesis. 1997;18(5):1113–1118.
12. Kobayashi Y, Nakae D, Akai H, et al. Prevention by 1′-acetoxychavicol
acetate of the induction but not growth of putative preneoplastic, gluta-
thione S-transferase placental form-positive, focal lesions in the livers of
rats fed a choline-deficient, L-amino acid-defined diet. Carcinogenesis.
1998;19(10):1809–1814.
13. Murakami A, Toyota K, Ohura S, Koshimizu K, Ohigashi H. Structure-
activity relationships of (1′S)-1′-acetoxychavicol acetate, a major
constituent of a Southeast Asian condiment plant Languas galanga, on
the inhibition of tumor-promoter-induced Epstein-Barr virus activation.
J Agric Food Chem. 2000;48(5):1518–1523.
14. Dahlui M, Ramli S, Bulgiba AM. Breast cancer prevention and con-
trol programs in Malaysia. Asian Pac J Cancer Prev. 2011;12(6):
1631–1634.
36. Geng QQ, Dong DF, Chen NZ, et al. Induction of p53 expression and
apoptosis by a recombinant dual-target MDM2/MDMX inhibitory
protein in wild-type p53 breast cancer cells. Int J Oncol. 2013;43(6):
1935–1942.
15. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical
need. Oncologist. 2011;16(1):1–11.
16. Chacón RD, Costanzo MV. Triple-negative breast cancer. Breast
Cancer Res. 2010;12(2):1–9.
37. Sax JK, El-Deiry WS. p53 downstream targets and chemosensitivity.
Cell Death Differ. 2003;10(4):413–417.
17. Lee S-J, Ando T. Optically active 1-acetoxychavicol acetate and its
positional isomers: synthesis and repellent effect against adzuki bean
weevil. J Pestic Sci. 2001;26:76–81.
38. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial
apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15(4):
1126–1132.
18. Hasima N, Aun LI, Azmi MN, et al. 1′S-1′-acetoxyeugenol acetate:
a new chemotherapeutic natural compound against MCF-7 human
breast cancer cells. Phytomedicine. 2010;17(12):935–939.
19. In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH. 1′S-1′-acetoxy-
eugenol acetate: a novel phenylpropanoid from Alpinia conchigera
enhances the apoptotic effects of paclitaxel in MCF-7 cells through
NF-kappaB inactivation. Anticancer Drugs. 2011;22(5):424–434.
20. Wang C-C, Lin S-Y, Lai Y-H, Liu Y-J, Hsu Y-L, Chen JJW. Dimethyl
sulfoxide promotes the multiple functions of the tumor suppres-
sor HLJ1 through activator protein-1 activation in NSCLC cells.
PLoS One. 2012;7(4):e33772.
39. Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M, Lock RB.
Bcl-2 inhibits Bax translocation from cytosol to mitochondria during
drug-induced apoptosis of human tumor cells. Cell Death Differ. 2000;
7(1):102–111.
40. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK:
a requisite gateway to mitochondrial dysfunction and death. Science.
2001;292(5517):727–730.
41. Misawa T, Dodo K, Ishikawa M, et al. Structure-activity relationships
of benzhydrol derivatives based on 1′-acetoxychavicol acetate (ACA)
and their inhibitory activities on multiple myeloma cell growth via
inactivation of the NF-kappaB pathway. Bioorg Med Chem. 2015;23(9):
2241–2246.
42. Ito K, Nakazato T, Xian MJ, et al. 1′-Acetoxychavicol acetate is a novel
nuclear factor kappaB inhibitor with significant activity against multiple
myeloma in vitro and in vivo. Cancer Res. 2005;65(10):4417–4424.
43. In LL, Arshad NM, Ibrahim H, Azmi MN, Awang K, Nagoor NH.
1′-Acetoxychavicol acetate inhibits growth of human oral carcinoma
xenograft in mice and potentiates cisplatin effect via proinflamma-
tory microenvironment alterations. BMC Complement Altern Med.
2012;12:179.
21. Diefenbach J, Burkle A. Introduction to poly(ADP-ribose) metabolism.
Cell Mol Life Sci. 2005;62(7–8):721–730.
22. Harlozinska A. Progress in molecular mechanisms of tumor metastasis
and angiogenesis. Anticancer Res. 2005;25(5):3327–3333.
23. Price JE, Polyzos A, Zhang RD, Daniels LM. Tumorigenicity and
metastasis of human breast carcinoma cell lines in nude mice. Cancer
Res. 1990;50(3):717–721.
24. Nair HK, Rao KVK, Aalinkeel R, Mahajan S, Chawda R, Schwartz SA.
Inhibition of prostate cancer cell colony formation by the flavonoid
quercetin correlates with modulation of specific regulatory genes. Clin
Diagn Lab Immunol. 2004;11(1):63–69.
25. Jin H, Varner J. Integrins: roles in cancer development and as treatment
targets. Br J Cancer. 2004;90(3):561–565.
26. Vachon PH. Integrin signaling, cell survival, and anoikis: distinctions,
differences, and differentiation. J Sig Transduction. 2011;2011:18.
44. Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear
factor kappa B and its significance in prostate cancer. Oncogene. 2001;
20(50):7342–7351.
45. Tamatani M, Che YH, Matsuzaki H, et al. Tumor necrosis factor induces
Bcl-2 and Bcl-x expression through NFκB activation in primary hip-
pocampal neurons. J Biol Chem. 1999;274(13):8531–8538.
Drug Design, Development andTherapy 2017:11
2774