Please do not adjust margins
Catalysis Science & Technology
Page 4 of 5
COMMUNICATION
Journal Name
(difficulty in accessing all the active sites present on the catalyst for
substrate molecules to interact with) faced with solid acids.
DOI: 10.1039/C5CY00858A
Biomass Bioenergy, 2011, 35, 2659‐2665.
16 A. S. Dias, M. Pillinger and A. A. Valente, Appl. Catal., A,
2005, 285, 126‐131.
The comparative study was also done for xylose dehydration
reaction with solid acid catalysts at 170 °C for 4 h (ESI†, Table S2).
The results showed that with IL2, 73% furfural yield was obtained
whereas with solid acid catalysts like, Amberlyst‐15, HUSY and
HMOR furfural yield obtained were only 64%, 60% and 57%,
respectively. This clearly shows that IL2 is better catalyst.
17 S. Lima, M. Pillinger and A. A. Valente, Catal. Commun., 2008,
9, 2144‐2148.
18 X. Qi, M. Watanabe, T. M. Aida and R. L. Smith, Catal.
Commun., 2009, 10, 1771‐1775.
19 C. Moreau, R. Durand, D. Peyron, J. Duhamet and P. Rivalier,
To confirm the stability and reusability of the BAILs, recycle studies
of the IL2 catalyst in both the reactions were carried out (ESI†,
section 2.3). In fructose dehydration reaction, with IL2 as a catalyst,
HMF yield of 73‐66% [73% (1st run), 73% (2nd run), 70% (3rd run),
68% (4th run), 66 (5th run) and 66 (6th run)] was achieved. Similarly,
IL2 catalyst was also recycled in the xylose dehydration reaction to
yield furfural. In the first reaction, 74% furfural yield was obtained
and in the subsequent runs 73‐64% yields were observed [73% (1st
run), 72% (2nd run), 69% (3rd run) 66% (4th run) 66 (5th run) and 64
(6th run)]. The slight decrease in yields in recycle runs are probably
due to loss of IL during recovery process. The efficiency of BAILs in
recycling experiment and use of concentrated sugar solutions (40
wt% fructose) can make this process economical compared to
known methods, which either do not show reproducible activity or
use lower substrate concentrations.
Ind. Crops Prod., 1998, 7, 95‐99.
20 A. S. Dias, M. Pillinger and A. A. Valente, J. Catal., 2005, 229
,
414‐423.
21 Y. Román‐Leshkov, J. N. Chheda and J. A. Dumesic, Science
(New York, N.Y.), 2006, 312, 1933‐1937.
22 S. Dutta, S. De, B. Saha and M. I. Alam, Catal. Sci. Technol.,
2012, 2, 2025‐2036.
23 P. Bhaumik and P. L. Dhepe, RSC Adv., 2013, 3, 17156.
24 S. Lima, P. Neves, M. M. Antunes, M. Pillinger, N. Ignatyev
and A. A. Valente, Appl. Catal., A, 2009, 363, 93‐99.
25 C. Li, Z. Zhang and Z. K. Zhao, Tetrahedron Lett., 2009, 50
5403‐5405.
,
26 S. Hu, Z. Zhang, J. Song, Y. Zhou and B. Han, Green Chem.,
2009, 11, 1746‐1749.
27 F. Jiang, Q. Zhu, D. Ma, X. Liu and X. Han, J. Mol. Catal. A:
Chem., 2011, 334, 8‐12.
28 F. Tao, H. Song and L. Chou, J. Mol. Catal. A: Chem., 2012,
357, 11‐18.
In summary, this report discusses the possibility of the use of
standalone BAILs in the synthesis of furans from concentrated
fructose and xylose solutions. It is noteworthy that the BAILs are
used in the catalytic amount to achieve high yields (73% HMF, 87%,
selectivity and 73% furfural, 76% selectivity) with IL2 catalyst. Even
with 40 wt% solution of fructose high yield of HMF (73%) was seen.
The detailed studies on S/C ratio, substrate concentration reveal
that both, acid strength and acid amount play an important role.
Moreover, easy recyclability of the catalyst (6 runs) with almost
similar yields for furans suggests good stability of IL2 catalyst.
29 F. Tao, H. Song and L. Chou, Carbohydr. Res., 2011, 346, 58‐
63.
30 H. Zhao, J. E. Holladay, H. Brown and Z. C. Zhang, Science
(Washington, DC, U. S.), 2007, 316, 1597‐1600.
31 B. Kim, J. Jeong, D. Lee, S. Kim, H.‐J. Yoon, Y.‐S. Lee and J. K.
Cho, Green Chem., 2011, 13, 1503‐1506.
32 G. Yong, Y. Zhang and J. Y. Ying, Angew. Chem. Int. Ed., 2008,
47, 9345‐9348.
33 J. B. Binder, J. J. Blank, A. V. Cefali and R. T. Raines,
ChemSusChem, 2010, 3, 1209‐1209.
34 M. Chidambaram and A. T. Bell, Green Chem., 2010, 12
,
1253‐1262.
References
35 C. Lansalot‐Matras and C. Moreau, Catal. Commun., 2003,
517‐520.
4,
1
2
P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538‐1558.
R. Sahu and P. Dhepe, React. Kinet., Mech. Catal., 2014, 112
173‐187.
R.‐J. van Putten, J. C. van der Waal, E. de Jong, C. B.
Rasrendra, H. J. Heeres and J. G. de Vries, Chem. Rev., 2013,
113, 1499‐1597.
36 J. Y. G. Chan and Y. Zhang, ChemSusChem, 2009, 2, 731‐734.
,
37 T. Stahlberg, M. G. Sorensen and A. Riisager, Green Chem.,
2010, 12, 321‐325.
38 T. Stahlberg, S. Rodriguez‐Rodriguez, P. Fristrup and A.
Riisager, Chem.‐Eur. J., 2011, 17, 1456‐1464.
3
39 C. Li, Z. K. Zhao, A. Wang, M. Zheng and T. Zhang, Carbohydr.
Res., 2010, 345, 1846‐1850.
4
5
6
7
M. E. Zakrzewska, E. Bogel‐Łukasik and R. Bogel‐Łukasik,
Chem. Rev., 2010, 111, 397‐417.
40 S. Lima, M. M. Antunes, M. Pillinger and A. A. Valente,
A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107
,
ChemCatChem, 2011, 3, 1686‐1706.
2411‐2502.
41 S. Eminov, J. D. E. T. Wilton‐Ely and J. P. Hallett, ACS
Sustainable Chem. Eng., 2014, , 978‐981.
42 X. Tong and Y. Li, ChemSusChem, 2010, , 350‐355.
43 Q. Bao, K. Qiao, D. Tomida and C. Yokoyama, Catal.
Commun., 2008, , 1383‐1388.
44 V. Choudhary, S. I. Sandler and D. G. Vlachos, ACS Catal.,
2012, , 2022‐2028.
45 C. Aellig, D. Scholz, P. Y. Dapsens, C. Mondelli and J. Perez‐
Ramirez, Catal. Sci. Technol., 2015, , 142‐149.
J. Wu, Y. Shen, C. Liu, H. Wang, C. Geng and Z. Zhang, Catal.
Commun., 2005, , 633‐637.
2
6
3
A. S. Mamman, J.‐M. Lee, Y.‐C. Kim, I. T. Hwang, N.‐J. Park, Y.
K. Hwang, J.‐S. Chang and J.‐S. Hwang, Biofuels Bioprod.
9
Biorefin., 2008, 2, 438‐454.
8
9
A. A. Rosatella, S. P. Simeonov, R. F. M. Frade and C. A. M.
Afonso, Green Chem., 2011, 13, 754‐793.
M. J. Climent, A. Corma and S. Iborra, Green Chem., 2011, 13
520‐540.
2
,
5
46 B. Cinlar, T. Wang and B. H. Shanks, Appl. Catal., A, 2013,
450, 237‐242.
10 J. N. Chheda, Y. Roman‐Leshkov and J. A. Dumesic, Green
Chem., 2007, , 342‐350.
9
47 R. Weingarten, J. Cho, J. W. C. Conner and G. W. Huber,
Green Chem., 2010, 12, 1423‐1429.
11 D. M. Alonso, J. Q. Bond and J. A. Dumesic, Green Chem.,
2010, 12, 1493‐1513.
48 J. Zhang, H. Zhang, J. Wu, J. Zhang, J. He and J. Xiang, Phys.
Chem. Chem. Phys., 2010, 12, 1941‐1947.
49 B. M. Matsagar and P. L. Dhepe, Catal. Sci. Technol., 2015,
531‐539.
12 W. D. Jong and G. Marcotullio, Int. J. Chem. React. Eng.,
2010, 8, 1542‐6580.
5
,
13 X. Qi, M. Watanabe, T. M. Aida and R. L. Smith, Jr., Green
Chem., 2008, 10, 799‐805.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins