F. Wang et al. / Carbohydrate Research 346 (2011) 982–985
985
ing rise to the formation of brown black soluble polymers and
insoluble humins. To avoid forming polymer and humins, a lower
fructose concentration (2 wt %) is optimal.
In summary, varied rare earth metal triflates as Lewis acid cat-
alysts were investigated in the dehydration of fructose to HMF. It
was found that catalytic activity increases with decreasing ionic ra-
HMF yield (mol %):
Moles of carbon in product
Moles of carbon loaded as fructose
Y ¼
ꢀ 100%
ð2Þ
Acknowledgment
3
dius of rare earth metal cations. Sc(OTf) is the most promising cat-
alyst for the conversion of fructose into HMF among the rare earth
metal triflates examined. The yield of HMF was found to be closely
dependent on the reaction temperature, reaction time, dosage of
catalyst and concentration of fructose. To obtain higher yields of
HMF, higher temperatures and shorter reaction times are essential.
This work was supported by the Natural Science Foundation of
Shaanxi Province (SJ08B13).
References
1
2
.
.
Qi, X. H.; Watanabe, M.; Aida, T. M.; Smith, R. L. Green Chem. 2008, 10, 799–805.
Roman-Leshkov, Y.; Chheda, J. N.; Dumesic, J. A. Science 2006, 312, 1933–1937.
1
1
. Experimental
3. Hu, S. Q.; Zhang, Z. F.; Zhou, Y. X.; Han, B. X.; Fan, H. L.; Li, W. J.; Song, J. L.; Xie,
Y. Green Chem. 2008, 10, 1280–1283.
4.
5.
6.
Zhao, H. B.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007, 316, 1597–
600.
Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem., Int. Ed. 2007, 46, 7164–
183.
Bao, Q. X.; Qiao, K.; Tomida, D.; Yokoyama, C. Catal. Commun. 2008, 9, 1383–
388.
7. Qi, X. H.; Watanabe, M.; Aida, T. M.; Smith, R. L. Ind. Eng. Chem. Res. 2008, 47,
234–9239.
Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A. Science 2005, 308, 1446–
450.
.1. Materials and experimental methods
1
7
Fructose (99%), glucose (99%) and H
2 4
SO (99%) were purchased
from Tianjin Chemical Reagents Company. HMF (98%), Yb(OTf)
3
1
(
(
3 3 3
99.99%), Sc(OTf) (99%), Ho(OTf) (98%), Sm(OTf) (98%), Nd(OTf)
98%) were all obtained from Sigma–Aldrich. Levulinic acid (98%)
3
9
8.
was purchased from Alfa Aesar. DMSO (99%), DMA (99.5%), 1,4-
dioxane (99%), PEG-400 (99%) and the other reagents are all analyt-
ical grade and used without further purification.
1
9. Asghari, F. S.; Yoshida, H. Ind. Eng. Chem. Res. 2007, 46, 7703–7710.
10. Asghari, F. S.; Yoshida, H. Ind. Eng. Chem. Res. 2006, 45, 2163–2173.
1
1
1. Li, Y. H.; Lu, X. Y.; Yuan, L.; Liu, X. Biomass Bioenergy 2009, 33, 1182–1187.
2. Moreau, C.; Durand, R.; Razigade, S.; Duhamet, J.; Faugeras, P.; Rivalier, P.; Ros,
P.; Avignon, G. Appl. Catal., A: General 1996, 145, 211–224.
In a typical reaction, 40 mg of fructose (2.22 mmol) and 2 g
(
25.6 mmol) DMSO were added in a 10 mL thick-walled glass ves-
sel equipped with magnetic stirring and a reflex condenser, and
then 4 mg catalyst was added into the mixture, the reaction mix-
ture was heated to 120 °C with an oil bath and kept for 2 h under
stirring (250 rpm). After the reaction, the reactor was cooled to
room temperature, and the post-reaction sample was diluted with
mobile phase solution before analysis.
13. Yan, H. P.; Yang, Y.; Tong, D.; Xiang, X.; Hu, C. W. Catal. Commun. 2009, 10,
558–1563.
1
14. Asghari, F. S.; Yoshida, H. Carbohydr. Res. 2006, 341, 2379–2387.
15. Shimizu, K.; Uozumi, R.; Satusuma, A. Catal. Commun. 2009, 10, 1849–1853.
16. Carlini, C.; Giuttari, M.; Galletti, A. M. R.; Sbrana, G.; Armaroli, T.; Busca, G. Appl.
Catal., A: General 1999, 183, 295–302.
17. Benvenuti, F.; Carlini, C.; Patrono, P.; Galletti, A. M. R.; Sbrana, G.; Massucci, M.
A.; Galli, P. Appl. Catal., A: General 2000, 193, 147–153.
1
1
8. Yong, G.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2008, 47, 9345–9348.
9. Chun, J. A.; Lee, J. W.; Yi, Y. B.; Hong, S. S.; Chung, C. H. Chem. Eng. 2010, 27,
1
.2. Analysis
930–935.
2
0. Seri, K.; Inoue, Y.; Ishida, H. Chem. Lett. 2000, 29, 22–23.
Sample analysis was performed on a Shimadzu HPLC system
21. Seri, K.; Inoue, Y.; Ishida, H. Bull. Chem. Soc. Jpn 2001, 74, 1145–1150.
2
2
2
2. Sarma, D.; Kumar, A. Appl. Catal., A: General 2008, 335, 1–6.
3. Aggarwal, V. K.; Vennall, G. P. Tetrahedron Lett. 1996, 37, 3745–3746.
4. Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. J. Org. Chem. 1997, 62,
6997–7005.
equipped with RID-10A detector and a Bio-Rad Aminex HPX-87H
SO was used
ion exclusion column (300 ꢀ 7.8 mm). 0.005 M H
2
4
as the mobile phase that had a flow rate of 0.55 mL/min. The col-
umn temperature was 50 °C, and the detector’s temperature was
set on 45 °C. The amount of fructose and HMF was determined
by using calibration curves.
25. Kobayashi, S.; Hachiya, I.; Yasuda, M. Tetrahedron Lett. 1996, 37, 5569–5572.
6. Kobayashi, S.; Hamada, T.; Nagayama, S.; Manabe, K. Org. Lett. 2001, 3, 165–
67.
27. Barrett, A. G. M.; Braddock, D. C. Chem. Commun. 1997, 351–352.
2
1
28. Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. L. Chem. Rev. 2002, 102,
2
227–2302.
1
.3. Fructose conversion and HMF yield definitions
2
9. Musau, R. M.; Munavu, R. M. Biomass 1987, 13, 67–74.
30. Nakamura, Y.; Morikawa, S. Bull. Chem. Soc. Jpn 1980, 53, 3705–3706.
The fructose conversion and HMF yield were defined as follows:
Fructose conversion (mol %):
31. Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979–1985.
32. Mednick, M. L. J. Org. Chem. 1962, 27, 398–403.
33. Rytting, E.; Lentz, K. A.; Chen, X. Q.; Qian, F.; Venkatesh, S. Pharm. Res. 2004, 21,
ꢀ
ꢁ
2
37–244.
34. Qi, X. H.; Watanabe, M.; Aida, T. M.; Smith, R. L. Catal. Commun. 2009, 10, 1771–
775.
Fructose concentration in product
Fructose concentration in the loaded sample
X ¼ 1 ꢁ
1
ꢀ
100%
ð1Þ