S. Couty et al. / Tetrahedron Letters 47 (2006) 767–769
769
resulting dehydrolennoxamine 12 (60%) was finally
1997, 817–821; (l) Rodriguez, G.; Cid, M. M.; Sa a´ , C.;
Castedo, L.; Dom ´ı nguez, D. J. Org. Chem. 1996, 61, 2780–
hydrogenated (cat. Pd (10%)/C, 1 atm H , AcOH, rt)
2
2
1
782; (m) Koseki, Y.; Nagasaka, T. Chem. Pharm. Bull.
995, 43, 1604–1606; (n) Moody, C. J.; Warrellow, G. J. J.
to afford lennoxamine in 65% yield (Scheme 3). The
spectroscopic and analytical data of this compound
were in perfect agreement with those reported in the
Chem. Soc., Perkin Trans. 1 1990, 2929–2936; (o) Moody,
C. J.; Warrellow, G. J. Tetrahedron Lett. 1987, 28, 6089–
3
literature.
6
092; (p) Napolitano, E.; Spinelli, G.; Fiaschi, R.; Marsili,
A. J. Chem. Soc., Perkin Trans. 1 1986, 785–787; (q)
Teitel, S.; Kl o¨ tzer, W.; Borgese, J.; Brossi, A. Can. J.
Chem. 1972, 50, 2022–2024.
A concise route to lennoxamine has been developed
from 2,3-dimethoxybenzoic acid (8 steps, 7% overall
yield) using a strategy complementary to the previously
reported approaches for the construction of the isoindo-
lone core of this isoindolobenzazepine alkaloid, that
relies on palladium-catalyzed Heck–Suzuki–Miyaura
domino reactions from an intermediate ynamide.
4. Couty, S.; Li e´ gault, B.; Meyer, C.; Cossy, J. Org. Lett.
2004, 6, 2511–2514.
. Auerbach, J.; Weissman, S. A.; Blacklock, T. J.; Angeles,
5
6
7
8
M. R.; Hoogsteen, K. Tetrahedron Lett. 1993, 34, 931–
9
34.
. (a) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998,
7, 489–492; (b) Kitamura, T.; Kotani, M.; Fujiwara, Y.
3
Synthesis 1998, 1416–1418.
. (a) Br u¨ ckner, D. Synlett 2000, 1402–1404; (b) Zhang, Y.;
Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L.
Org. Lett. 2004, 6, 1151–1154.
Acknowledgements
We thank Johnson and Johnson for financial support
. The ratio of the two geometric isomers was determined by
(
(
Focus Giving Award to J.C.) and Dr. Axel Couture
Universit e´ des Sciences et Technologies de Lille) for
1
H NMR and their configuration was readily assigned by
3i
comparison with the data reported for the (E)-isomer. It
providing us with a detailed experimental procedure
for the cyclization of compound 11.
was checked that purification of compound 10 by chro-
matography on silica gel did not lead to any isomerization
since the crude product was already an 85/15 isomeric
mixture.
9
. As alkynylsilanes are known to be deprotected under
alkaline conditions, the preparation of 10 could also be
directly achieved from trimethylsilylynamide 7 by initial
treatment with the base (aq NaOH, THF, reflux) followed
by addition of the palladium catalyst and arylboronic acid
9 although the overall yield of compound 10 was not
improved by this one-pot procedure.
References and notes
1
. (a) Cordell, G. A.. In The Alkaloids: Chemistry and
Pharmacology; Academic Press: San Diego, 1998; Vol. 50;
(
1
b) Weinstock, J.; Hieble, J. P.; Wilson, J. W. Drugs Future
985, 10, 645–651; (c) Padwa, A.; Beall, L. S.; Eidell, C.
K.; Worsencroft, K. J. J. Org. Chem. 2001, 66, 2414–2421,
and references cited therein.
. Valencia, E.; Freyer, A. J.; Shamma, M.; Fajardo, V.
Tetrahedron Lett. 1984, 25, 599–602.
. For an enantioselective synthesis of lennoxamine, see: (a)
Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7,
10. Amatore, C.; Bensalem, S.; Ghalem, S.; Jutand, A. J.
Organomet. Chem. 2004, 689, 4642–4646, and references
cited therein.
11. Thermodynamic isomerization of the double bond in
3-(arylmethylene)isoindolin-1-ones can be induced by
treatment under acidic conditions, see for example:
Rys, V.; Couture, A.; Deniau, E.; Grandclaudon, P.
Tetrahedron 2003, 59, 6615–6619.
12. Protonation of the double bond in 3-(arylmethylene)-
isoindolin-1-ones generates N-acyliminum cations that can
be trapped by a nucleophile, including water, to generate
the corresponding N-acylcarbinolamines. For some appli-
cations, see: (a) Chihab-Eddine, A.; Da ¨ı ch, A.; Jilale, A.;
Decroix, B. Heterocycles 2002, 58, 449–456; (b) Da ¨ı ch, A.;
Marchalin, S.; Pigeon, P.; Decroix, B. Tetrahedron Lett.
1998, 39, 9187–9190.
2
3
9
5–98; For racemic syntheses of lennoxamine, see: (b)
Taniguchi, T.; Iwasaki, K.; Uchiyama, M.; Tamura, O.;
Ishibashi, H. Org. Lett. 2005, 7, 4389–4390; (c) Honda, T.;
Sakamaki, Y. Tetrahedron Lett. 2005, 46, 6823–6825; (d)
Sahakitpichan, P.; Ruchirawat, S. Tetrahedron 2004, 60,
4
169–4172; (e) Kim, G.; Kim, J. H.; Kim, W.-J.; Kim, Y.
A. Tetrahedron Lett. 2003, 44, 8207–8209; (f) Koseki, Y.;
Katsura, S.; Kusano, S.; Sakata, H.; Sato, H.; Monzene,
Y.; Nagasaka, T. Heterocycles 2003, 59, 527–540; (g)
Fuchs, J. R.; Funk, R. L. Org. Lett. 2001, 3, 3923–3925;
(
2
h) Ruchirawat, S.; Sahakitpichan, P. Tetrahedron Lett.
000, 41, 8007–8010; (i) Couture, A.; Deniau, E.; Grand-
claudon, P.; Hoarau, C. Tetrahedron 2000, 56, 1491–1499;
j) Koseki, Y.; Kusano, S.; Sakata, H.; Nagasaka, T.
13. Grignard additions to phthalimides followed by dehydra-
tion of the resulting N-acylcarbinolamines is a well-known
route towards 3-(arylmethylene)isoindolin-1-ones, see for
example: Kato, Y.; Ebiike, H.; Achiwa, K.; Ashizawa, N.;
Kurihara, T.; Kobayashi, F. Chem. Pharm. Bull. 1990, 38,
2060–2062.
(
Tetrahedron Lett. 1999, 40, 2169–2172; (k) Ishibashi, H.;
Kawanami, H.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1