Q.D. Truong et al. / Catalysis Communications 19 (2012) 85–89
89
Recently, Wu et al. introduced steady-state optical-fiber reactor with
References
Cu/TiO2 coated fiber, taking advance of transmission and spread light,
enhancing the CH3OH yield through electron transfer site Cu2O clus-
ter [18,35]. In our case, the selective production of CH3OH was pre-
sumably driven by the unique electronic structure of FeTiO3.
Mechanism of photoproduction of CH3OH has been discussed in
few reports [29,31,33]. Upon light irradiation, photo-excited electrons
could reduce the carbonates species to form HCOOH intermediate,
following by further reduction to HCHO and CH3OH [29,31]. The
CH3OH production in this study can be described as follow. The pre-
dominant step is that photo-generated electrons attack carbonate
species to form formyloxyl radical:
[1] X.J. Feng, J.D. Sloppy, T.J. LaTemp, M. Paulose, S. Komarneni, N.Z. Bao, C.A. Grimes,
Journal of Materials Chemistry 21 (2011) 13429–13433.
[2] C.C. Lo, C.H. Hung, C.S. Yuan, J.F. Wu, Solar Energy Materials and Solar Cells 91
(2007) 1765–1774.
[3] K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno, T. Funabiki, The Journal of Physical
Chemistry B 108 (2004) 346–354.
[4] K. Teramura, H. Tsuneoka, T. Shishido, T. Tanaka, Chemical Physics Letter 467
(2008) 191–194.
[5] Z.Y. Wang, H.C. Chou, J.C.S. Wu, D.P. Tsai, G. Mul, Applied Catalysis A: General 380
(2010) 172–177.
[6] S.C. Yan, S.X. Ouyang, J. Cao, M. Yang, J.Y. Feng, X.X. Fan, L.J. Wan, Z.S. Li, J.H. Ye, Y.
Zhou, Z.G. Zou, Angewandt Chemie International Edition 49 (2010) 6400–6404.
[7] Q. Liu, Y. Zhou, J.H. Kou, X.Y. Chen, Z.P. Tian, J. Gao, S.C. Yan, Z. Zou, Journal of the
American Chemical Society 132 (2010) 14385–14387.
[8] N. Zhang, S.X. Ouyang, P. Li, Y.J. Zhang, G.C. Xi, T. Kako, J.H. Ye, Chemical Commu-
nication 47 (2011) 2041–2043.
[9] K. Koci, L. Obalva, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova, Applied
Catalysis B: Environmental 89 (2009) 494–502.
[10] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S.G. Zhang, Y. Ichihashi, D.R. Park, Y.
Suzuki, K. Koyano, T. Tatsumi, Catalysis Today 44 (1998) 327–332.
[11] Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu, P. Biswas, Applied Catalysis B:
Environmental 100 (2010) 386–392.
[12] O. Ishitani, C. Inoue, Y. Suzuki, T. Ibusuki, Journal of Photochemistry and Photobi-
ology A: Chemistry 72 (1993) 269–271.
−
H2CO3 þ e− → HCOO þ OH
ð5Þ
ð6Þ
•
HCO−3 þ H2O þ e− → HCOO þ 2OH
:
−
•
The additional electron transfer produces formate ion, which is
further protonated to produce HCOOH [31].
[13] S.H. Chien, M.C. Kuo, C.H. Lu, K.N. Lu, Catalysis Today 97 (2004) 121–127.
[14] O. Ozcan, F. Yukruk, E.U. Akkaya, D. Uner, Topic Catalysis 44 (2007) 523–528.
[15] C.C. Yang, Y.H. Yu, B. van der Linden, J.C.S. Wu, G. Mul, Journal of the American
Chemical Society 132 (2010) 8398–8406.
[16] I.H. Tseng, W.C. Chang, J.C.S. Wu, Applied Catalysis B: Environmental 37 (2002)
37–48.
−
HCOO þ e → HCOO−
ð7Þ
ð8Þ
•
HCOO− þ Hþ → HCOOH:
[17] I.H. Tseng, J.C.S. Wu, H.Y. Chou, Journal of Catalysis 221 (2004) 432–440.
[18] J.C.S. Wu, H.M. Lin, C.L. Lai, Applied Catalysis A: General 296 (2005) 194–200.
[19] O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, Nano Letters 9 (2009)
731–737.
[20] Q. Zhang, Y. Li, E. Ackerman, M. Gajdardziska-Josifovska, H. Li, Applied Catalysis A:
General 400 (2011) 195–202.
Then HCOOH can be reduced to HHCO and CH3OH afterward.
HCOOH þ 3H2O þ 4e− → CH3OH þ 4OH−
:
ð9Þ
[21] T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki, O. Ishitani, ACS Applied Materials &
Interfaces 3 (2011) 2594–2600.
[22] W. Ho, J.C. Yu, Lin, P. Li, Langmuir 20 (2004) 5865–5869.
[23] S.Y. Chai, Y.J. Kim, W.I. Lee, Journal of Electroceramics 17 (2006) 909–912.
[24] B. Gao, Y.J. Kim, A.K. Chakraborty, W.I. Lee, Applied Catalysis B: Environmental 83
(2008) 202–207.
[25] J.Y. Liu, B. Garg, Y.C. Ling, Green Chemistry 13 (2011) 2029–2031.
[26] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, Journal of
the American Chemical Society 127 (2005) 8286–8287.
[27] J. Mona, S.N. Kale, A.B. Gaikwad, A.V. Muugan, V. Ravi, Materials Letters 60 (2006)
1425–1427.
[28] K. Tomita, M. Kobayashi, V. Petrykin, S. Yin, T. Sato, M. Yoshimura, M. Kakihana,
Journal of Material Science 43 (2008) 2217–2221.
[29] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637–638.
[30] F. Solymosi, I. Tombacz, Catalysis Letters 27 (1994) 61–65.
[31] H. Yamashito, N. Kamada, H. He, K. Tanaka, S. Ehara, M. Anpo, Chemistry Letters
(1994) 855–858.
4. Conclusions
In summary, the uniform, nano-sized FeTiO3/TiO2 composite has
been synthesized by a facile hydrothermal method. The FTC exhibit
remarkable photocatalytic activity for the reduction of CO2 under
both visible and UV–Vis light irradiation with a maximum CH3OH
yield of about 0.46 μmol g−1 h−1 that is three times higher than
that from bare TiO2 or Degussa P25. The unique band structure and
the junction effect of two semiconductors as well as the narrow
band gap of FeTiO3 are responsible for its high efficiency of selective
production of CH3OH.
[32] S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, Journal of Photochemistry and Photobi-
ology A: Chemistry 115 (1998) 223–226.
[33] G.R. Dey, A.D. Belapurkar, K. Kishore, Journal of Photochemistry and Photobiology
A: Chemistry 163 (2004) 503–508.
Acknowledgments
[34] Y. Ku, W.H. Lee, W.Y. Wang, Journal of Molecular Catalysis A: Chemical 212
(2004) 191–196.
[35] J.C.S. Wu, H.M. Lin, International Journal of Photoenergy 7 (2005) 115–119.
Financial support by the National Science Council, Taiwan (NSC95-
2113-M-007-044-MY3 and NSC98-2113-M-007-016-MY3) is grate-
fully acknowledged.