As a result, the reaction of S-methyl-isothiosemicarbazone compound and [Ni(PPh3)2Cl2] gave chloride salt of cationic
thiosemicarbazone complex, [Ni(LH)PPh3]+Cl-·(CH3)2CHOH. The cationic form was successfully formed via hydrogen transfer. Isopropyl
alcohol catalyzed efficiently the transfer hydrogenation by providing appropriate polarity media and the compound (I) formed through
interconversion azinyl-azinylidene. The spectral data and x-ray analysis proved that azinylidene structure was stabilized by intramolecular
proton transfer and by intermolecular interactions and hydrogen bondings.
X-ray analysis reveals that the thiosemicarbazone ligand coordinated to nickel as a tridentate monobasic chelator via O,N,N atoms. The
crystalline lattice involves a chloride ion and an isopropyl alcohol molecule, also. The isopropyl alcohol has two acceptors (electron pairs
of O atom) and only one donor (H atom), and give three hydrogen bonds. That is, H atom of the alcoholic hydroxyl group forms a hydro-
gen bond with Cl atom of the other molecule, and O atom of hydroxyl group forms two hydrogen bonds with hydrogen atoms of N1-H of
thiosemicarbazone and of C17-H of PPh3. Thus, the hydrogen bridges between protons of isopropyl alcohol, thiosemicarbazone and
triphenylphosphine, and six-membered ring between chlorine atom and hydrogen atoms of N2-H and C3-H of thiosemicarbazone complex
provide extra stability in formed solute-solvent complex structure. So, the structure is fixed by the hydrogen bonds. This framework is
prepared from molecules "self-associate" via multiple hydrogen-bonding interactions.
The DFT calculations show that structure A is more stable than the other tautomers.
The decomposition of the compound was investigated by using thermogravimetry. The synthesized nickel complex showed unexpected
behavior. The oxidative thermal decomposition shows volatilizing nickel complex of thiosemicarbazone nature as unusual.
Appendix A. Supplementary data
CCDC 1044168 contains the supplementary crystallographic data for the compound reported in this article. These data can be obtained free
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Acknowledgement
This work was supported by the Research Fund of Istanbul University.
References
[1]
[2]
[3]
[4]
[5]
[6]
B.Atasever, B.Ülküseven, T. Bal-Demirci, S.Erdem-Kuruca, Z. Solakoğlu, Invest. New Drugs28 (2010) 421-432.
T. Bal, B.Atasever, Z.Solakoğlu, S.Erdem-Kuruca, B. Ulkuseven, Eur. J. Med. Chem. 42 (2007) 161-167.
M.C. Rodriguez-Arguelles, E. Lopez-Silva, J.Sanmartin, P.Pelagatti, F. Zani, J. Inorg. Biochem. 99 (2005) 2231-2239.
N.S. Moorthy, N.M. Cerqueira, M.J. Ramos, P.A. Fernandes, Recent Pat Anticancer Drug Discov. 8 (2013) 168-182.
T. Bal-Demirci, M.Şahin, M.Özyürek, E.Kondakçı, B. Ulkuseven, Spectrochim. Acta Part A. 126 (2014) 317-323.
R.C. DeConti, B.R. Toftness, K.C. Agrawal, R.Tomchick, J.A. Mead, J.R.Bertino, A.C. Sartorelli, W.A. Creasey, Cancer Res. 32 (1972)
1455-1462.
[7]
D.R. Richardson, P.C. Sharpe, D.B. Lovejoy, D.Senaratne, D.S.Kalinowski, M. Islam, P.V. Bernhardt, J Med Chem. 49 (2006) 6510-
6521.
[8]
[9]
H. A. Zamani, Anal. Lett. 41 (2008) 1850-1866.
N. Nuriman, B. Kuswandi, and W. Verboom, Sens. Actuators B 157 (2011) 438-443.
K.H. Reddy, N.B.L. Prasad, T.S. Reddy, Talanta, 59 (2003) 425-433.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
F. Salinas, J.C. Jimenez Sanchez, T. Galeano Diaz, Anal. Chem.58 (1986) 824-827.
J.S. Casas, M.S. Garcia-Tasende, J. Sordo, Coord. Chem. Rev. 209 (2000) 197-261.
Ş.Güveli, A.Koca, N.Özdemir, T. Bal-Demirci, B. Ülküseven, New J. Chem.38(2014) 5582-5589.
R. Yanardag, T. Bal Demirci, B. Ülküseven, S.Bolkent, S.Tunali, Ş. Bolkent, Eur. J. Med. Chem. 44 (2009) 818-826.
N Özdemir, M Şahin, T Bal-Demirci, B Ülküseven, Polyhedron 30 (3), (2011) 515-521
T. Bal, B. Ülküseven, Transit. Metal Chem. 29 (2004) 880-884.
T.S.Lobana, P.Kumari, R.J. Butcher, J.P. Jasinski, J.A. Golen, Z Anorg. Allg. Chem. 638(2012) 1861-1867.
P.K. Panchal, P.B.Pansuriya, M.N. Patel, J Enzym. Inhıb Med Ch. 21 (2006) 453-458.
D.X. West, M.M.Salberg, G.A. Bain, A.E. Liberta, Transit. Metal Chem. 22 (1997) 180-184.
T. Demirci, Y. Köseoğlu, S. Güner, B. Ülküseven, Cent. Eur. J Chem (Open Chem.). 4 (1), (2006) 149–159, DOI: 10.1007/s11532-005-
0011-z
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
T. Bal-Demirci, M.Akkurt, Ş.P.Yalçın, O. Büyükgüngör, Transit. Metal Chem. 35 (2010) 95-102.
A.E.Liberta, D.X. West, BioMetals 5 (1992) 121-126.
A.Basu, G. Das, Dalton Trans. 40(2011) 2837-2843.
T. Bal-Demirci, Polyhedron 27 (2008) 440-446.
I. Pal, F.Basuli, S. Bhattacharya, J. Chem. Sci. 114 (2002) 255-268.
N. J. Turro, PNAS, 102(31)(2005) 10766-10770
R. Alonso, E. Bermejo, R. Carballo, A.Castiñeiras, T. Pérez, J. Mol. Struct. 606 (2002) 155-173.
A.Castiñeiras, N.Fernández-Hermida, R.Fernández-Rodríguez, I. García-Santos, Cryst. Growth Des. 12 (2012) 1432-1442.
Yu.A. Simonov, M.D.Revenco,P.N.Bourosh, P.I.Bulmaga, M.Gdaniec, Crystallogr. Reports 54 (2009) 893-897.
Ş.Güveli, T. Bal-Demirci, N.Özdemir, B. Ülküseven, Transit. Metal Chem. 34 (2009) 383-388.
T. Maruyama, and T.Tago, J. Mater. Sci.28 (1993) 5345-5348.
V.V.Bakovets, V.N. Mitkin, and N.V. Gelfond, Chem. Vapor. Depos. 11 (2005) 112-117.
B.Ulkuseven, T. Bal-Demirci, M.Akkurt, Ş.P.Yalcın, O. Buyukgungor, Polyhedron 27 (2008) 3646-3652.
Stoe&Cie, X-AREA Version 1.18 and X-RED32 Version 1.04, Stoe&Cie, Darmstadt, Germany, (2002).
G.M. Sheldrick,Acta Crystallogr. C71 (2015) 3-8.
L.J.Farrugia, J. Appl. Crystallogr. 45 (2012) 849-854.
A.D.Becke, J. Chem. Phys. 98 (1993) 5648-5652.
C.Lee, W. Yang, R.G. Parr, Phys. Rev. B37 (1988) 785-789.
P.J. Hay, W.R.Wadt, J. Chem. Phys. 82 (1985) 270-283.
P.J. Hay, W.R.Wadt, J. Chem. Phys. 82 (1985) 284-298.
P.J. Hay, W.R.Wadt, J. Chem. Phys. 82 (1985) 299-310.
A.D. McLean, G.S. Chandler, J. Chem. Phys. 72(1980) 5639-5648.
K.Raghavachari, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650-654.
R. Ditchfield, J. Chem. Phys. 56 (1972) 5688-5691.
K.Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251-8260.
R.I.I.Dennington, T. Keith, J. Millam, Gauss View, Version 4.1.2,Semichem Inc., Shawnee Mission, KS, 2007.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T.Vreven, K.N.Kudin,
J.C.Burant, J.M.Millam, S.S.Iyengar, J.Tomasi, V. Barone, B.Mennucci, M.Cossi, G.Scalmani, N.Rega, G.A.Petersson, H.Nakatsuji,
M.Hada, M.Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.Nakai, M.Klene, X. Li, J.E.
Knox, H.P.Hratchian, J.B. Cross, V. Bakken, C.Adamo, J. Jaramillo, R.Gomperts, R.E.Stratmann, O.Yazyev, A.J. Austin, R.Cammi,
C.Pomelli, J.W.Ochterski, P.Y.Ayala, K.Morokuma, G.A.Voth, P. Salvador, J.J. Dannenberg,V.G.Zakrzewski, S.Dapprich, A.D. Dan-
iels, M.C. Strain, O.Farkas, D.K.Malick, A.D.Rabuck, K.Raghavachari, J.B.Foresman, J.V. Ortiz, Q. Cui, A.G.Baboul, S. Clifford,
J.Cioslowski, B.B.Stefanov, G. Liu, A.Liashenko, P.Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng,
A.Nanayakkara, M.Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.Pople, Gaussian 03, Revision E.01,
Gaussian, Inc., Wallingford CT, 2004.
[48]
[49]
[50]
[51]
[52]
E.Cancès, B.Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997) 3032-3041.
R.E.Stratmann, G.E.Scuseria, R. Frisch, J. Chem. Phys. 109 (1998) 8218-8224.
M.E.Casida, C.Jamorski, K.C.Casida, D.R. Salahub, J. Chem. Phys. 108 (1998) 4439-4449.
Ş.Güveli, B.Ülküseven, Polyhedron 30 (2011) 1385-1388.
P.Kalaivani, R.Prabhakaran, F.Dallemer, K.Natarajan, RSC Adv. 94 (2014) 51850-51864. https://dx.doi.org/10.1039/C4RA08492F