Molecules 2015, 20
15891
2
2
2
0. Chen, K.; Zhang, P.; Wang, Y.; Li, H. Metal-free allylic/benzylic oxidation strategies with
molecular oxygen: Recent advances and future prospects. Green Chem. 2014, 16, 2344–2374.
1. Chen, K.; Jia, L.; Wang, C.; Yao, J.; Chen, Z.; Li, H. Theoretical Design of Multi-Nitroxyl Organocatalysts
with Enhanced Reactivity for Aerobic Oxidation. ChemPhysChem 2014, 15, 1673–1680.
2. Zhao, Q.; Chen, K.; Zhang, W.; Yao, J.; Li, H. Efficient metal-free oxidation of ethylbenzene with
molecular oxygen utilizing the synergistic combination of NHPI analogues. J. Mol. Catal. A Chem.
2
015, 402, 79–82.
2
2
2
2
3. Punta, C.; Rector, C.L.; Porter, N.A. Peroxidation of Polyunsaturated Fatty Acid Methyl Esters
Catalyzed by N-Methyl Benzohydroxamic Acid: A New and Convenient Method for Selective
Synthesis of Hydroperoxides and Alcohols. Chem. Res. Toxicol. 2005, 18, 349–356.
4. Melone, L.; Prosperini, S.; Ercole, G.; Pastori, N.; Punta, C. Is it possible to implement
N-hydroxyphthalimide homogeneous catalysis for industrial applications? A case study of cumene
aerobic oxidation. J. Chem. Technol. Biotechnol. 2014, 89, 1370–1378.
5. Petroselli, M.; Franchi, P.; Lucarini, M.; Punta, C.; Melone, L. Aerobic Oxidation of Alkylaromatics
using a Lipophilic N-Hydroxyphthalimide: Overcoming the Industrial Limit of Catalyst Solubility.
ChemSusChem 2014, 7, 2695–2703.
6. Gotoh, K.; Kariya, R.; Alam, M.; Matsuda, K.; Hattori, S.; Maeda, Y.; Motoyama, K.; Kojima, A.;
Arima, H.; Okada, S. The antitumor effects of methyl-β-cyclodextrin against primary effusion
lymphoma via the depletion of cholesterol from lipid rafts. Biochem. Biophys. Res. Commun. 2014,
455, 285–289.
2
7. Mohammad, N.; Malvi, P.; Singh Meena, A.; Vikram Singh, S.; Chaube, B.; Vannuruswamy, G.;
Kulkarni, M.J.; Bhat, M.K. Cholesterol depletion by methyl-β-cyclodextrin augments tamoxifen
induced cell death by enhancing its uptake in melanoma. Mol. Cancer 2014, 13, 204,
doi:10.1186/1476-4598-13-204.
2
2
3
8. Hryniewicz-Jankowska, A.; Augoff, K.; Biernatowska, A.; Podkalicka, J.; Sikorski, A.F. Membrane
rafts as a novel target in cancer therapy. Biochim. Biophys. Acta 2014, 1845, 155–165.
9. Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: Methods to enhance complexation
efficiency. J. Pharm. Sci. 2012, 101, 3019–3032.
0. Flaherty, R.J.; Nshime, B.; de LaMarre, M.; de Jong, S.; Scott, P.; Lantz, A.W. Cyclodextrins as
complexation and extraction agents for pesticides from contaminated soil. Chemosphere 2013,
91, 912–920.
3
3
3
1. Tekpli, X.; Holme, J.A.; Sergent, O.; Lagadic-Gossmann, D. Role for membrane remodeling in cell
death: Implication for health and disease. Toxicology 2013, 304, 141–157.
2. Gambarotti, C.; Punta, C.; Recupero, F. Encyclopedia of Reagents for Organic Synthesis;
John Wiley & Sons: Weinheim, Germany, 2005.
3. Pratt, D.A.; Mills, J.H.; Porter, N.A. Theoretical calculations of carbon-oxygen bond dissociation
enthalpies of peroxyl radicals formed in the autoxidation of lipids. J. Am. Chem. Soc. 2003, 125,
5801–5810.
3
4. Amorati, R.; Lucarini, M.; Mugnaini, M.; Pedulli, G.F.; Minisci, F.; Recupero, F.; Fontana, F.;
Astolfi, P.; Greci, L. Hydroxylamines as oxidation catalysts: Thermochemical and kinetic studies.
J. Org. Chem. 2003, 68, 1747–1754.