RSC Advances
Paper
12 M. A. J. Gillissen, T. Terashima, E. W. Meijer,
A. R. A. Palmans and I. K. Voets, Macromolecules, 2013, 46,
4120–4125.
13 J. Chiefari, Y. K. B. Chong, F. Ercole, J. Krstina, J. Jeffery,
T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad,
G. Moad, E. Rizzardo and S. H. Thang, Macromolecules,
1998, 31, 5559–5562.
4 Conclusions
Amphiphilic PCL-b-[PGMA-g-PC]-b-P(PEGMA) with uorescence
units was synthesized through ROP, RAFT and click chemistry.
Micelles obtained from the self-assembly of amphiphilic
copolymers have been used as a nano reservoir for controlled
release of DOX, a model anticancer drug. These novel micelles
are proved to be capable of loading high drug quantities with a
reasonable loading efficiency (about 70%). The release prole of
DOX from micelles in articial urine shows a slow release in 3
days. MTT assays showed that DOX-loaded core–shell micelles
exhibited high antitumor activity in UMUC3 cells, while pristine
micelles were practically nontoxic up to a tested concentration
of 2.0 mg mLꢀ1. These micelles with excellent biocompatibility,
superior drug loading, high extracellular stability and
controlled drug release are promising for the ideal drug delivery
system of anticancer drugs.
¨
14 J. C. Chen, M. Z. Liu, C. M. Gao, S. Y. Lu, X. Y. Zhang and
Z. Liu, RSC Adv., 2013, 3, 15085–15093.
15 J. C. Chen, M. Z. Liu, C. Chen, H. H. Gong and C. M.
Gao, ACS Appl. Mater. Interfaces, 2011, 3, 3215–
3223.
16 A. W. York, S. E. Kirkland and C. L. McCormick, Adv. Drug
Delivery Rev., 2008, 60, 1018–1036.
17 V. Coessens, T. Pintauer and K. Matyjaszewski, Prog. Polym.
Sci., 2001, 26, 337–377.
18 C. W. Scales, A. J. Convertine and C. L. McCormick,
Biomacromolecules, 2006, 7, 1389–1392.
19 D. Bontempo, K. L. Heredia, B. A. Fish and H. D. Maynard, J.
Am. Chem. Soc., 2004, 126, 15372–15373.
20 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021.
21 C. Barner-Kowollik, F. E. Du Prez, P. Espeel, C. J. Hawker,
T. Junkers, H. Schlaad and C. W. Van, Angew. Chem., Int.
Ed., 2011, 50, 60–62.
Acknowledgements
The authors gratefully acknowledge the nancial support of the
National Natural Science Foundation of China (grant no.
51273086), the Fund for Fostering Talents from National
Natural Science Foundation of China (grant no. J1103307) and
Special Doctorial Program Fund from the Ministry of Education
of China (grant no. 20090211110004).
¨
22 J. C. Chen, M. Z. Liu, H. H. Gong, G. J. Cui, S. Y. Lu,
C. M. Gao, F. Huang, T. Chen, X. Y. Zhang and Z. Liu,
Polym. Chem., 2013, 4, 1815–1825.
23 J. Song, E. Lee and B.-K. Cho, J. Polym. Sci., Part A: Polym.
Chem., 2013, 51, 446–456.
References
24 L. Lienafa, S. Monge and J.-J. Robin, J. Polym. Sci., Part A:
Polym. Chem., 2012, 50, 3407–3414.
25 A. Gregory and M. H. Stenzel, Prog. Polym. Sci., 2012, 37, 38–
105.
26 M. Kasuya, T. Taniguchi, R. Motokawa, M. Kohri,
K. Kishikawa and T. Nakahira, J. Polym. Sci., Part A: Polym.
Chem., 2013, 51, 4042–4051.
1 L. Chang, L. Deng, W. Wang, Z. Lv, F. Hu, A. Dong and
J. Zhang, Biomacromolecules, 2012, 13, 3301–3310.
2 S. R. Mane, V. Rao, K. Chaterjee, H. Dinda, S. Nag, A. Kishore,
J. Das Sarma and R. Shunmugam, Macromolecules, 2012, 45,
8037–8042.
3 Y. Du, W. Chen, M. Zheng, F. Meng and Z. Zhong,
Biomaterials, 2012, 33, 7291–7299.
27 E. Chiong, K. E. Gaston and H. B. Grossman, World J. Urol.,
2008, 26, 25–30.
28 D. P. Griffith, D. M. Musher and C. Itin, Invest. Urol., 1976,
13, 346–350.
29 F. Chen, Z. Cheng, J. Zhu, W. Zhang and X. Zhu, Eur. Polym.
J., 2008, 44, 1789–1795.
30 T. J. Mosmann, Immunol. Methods, 1983, 65, 55–63.
31 M. Li, G. L. Li, Z. Zhang, J. Li, K. G. Neoh and E. T. Kang,
Polymer, 2010, 51, 3377–3386.
4 A. Li, H. P. Luehamann, G. Sun, S. Samarajeewa, J. Zou,
S. Zhang, F. Zhang, M. J. Welch, Y. Liu and K. L. Wooley,
ACS Nano, 2012, 10, 8970–8982.
5 R. Wei, L. Cheng, M. Zheng, R. Cheng, F. Meng, C. Deng and
Z. Zhong, Biomacromolecules, 2012, 13, 2429–2438.
6 A. N. Lukyanov and V. P. Torchilin, Adv. Drug Delivery Rev.,
2004, 56, 1273–1289.
7 R. Haag, Angew. Chem., Int. Ed., 2004, 43, 278–282.
8 G. Lapienis, Prog. Polym. Sci., 2009, 34, 852–892.
9 Z. Cheng, X. Zhu, G. D. Tu, E. T. Kang and K. G. Neoh,
Macromolecules, 2005, 38, 7187–7192.
¨
32 F. He, T. Gadt, I. Manners and M. A. Winnik, J. Am. Chem.
Soc., 2011, 133, 9095–9103.
33 Z. L. Tyrrell, Y. Shen and M. Radosz, Prog. Polym. Sci., 2010,
35, 1128–1143.
10 J. C. Chen, M. Z. Liu, H. H. Gong, Y. J. Huang and C. Chen, J.
Phys. Chem. B, 2011, 115, 14947–14955.
34 S. Chang, S. Chiu, C. Hsu, Y. Chang and Y. Liu, Polymer,
2012, 53, 4399–4406.
11 J. L. Zhu, H. Cheng, Y. Jin, S. X. Cheng, X. Z. Zhang and
R. X. Zhuo, J. Mater. Chem., 2008, 18, 4433–4439.
9692 | RSC Adv., 2014, 4, 9684–9692
This journal is © The Royal Society of Chemistry 2014