1384
A. Hausherr et al.
PAPER
able 8 1H NMR Data of Propargyl Ethers 4 and Allenyl Ethers 5 (270 MHz, CDCl3/TMS); , J (Hz)
roduct
Alkyne or Allene, respectively
Auxiliary
a
4.25 (br. s, 2 H, 1-H), 2.25–2.17 (m, 2 H,
4-H), 1.58–1.21 (m, 14 H, CH2), 0.88
(t, J = 7.0, 3 H, CH3)
5.88 (d, J = 3.9, 1 H, 1-H), 4.63 (d, J = 3.9, 1 H, 2-H), 4.34–4.25 (m, 1 H, 5-H), 4.16
(dd, J = 7.3, 3.0, 1 H, 4-H), AB part of ABX-system ( A = 4.08, B = 4.00, JAB = 8.8,
JAX = JBX = 8.0, 2 H, 6-H), 4.00 (d, J = 3.0, 1 H, 3-H), 1.50, 1.43, 1.35, 1.31 (4 s, 3 H
each, CH3)
ba
ca
ab
AB-system ( A = 4.50, B = 4.42,
JAB = 15.6, 2 H, 1-H), 2.19 (t, J = 7.0, 2 H,
4-H), 1.50–1.20 (m, 14 H, CH2), 0.88
(t, J = 6.8, 3 H, CH3)
4.30 (dd, J = 7.3, 5.6, 1 H, 4-H), 4.27 (d, J = 8.6, 1 H, 1-H), 4.19 (dd, J = 5.6, 2.0,
1 H, 5-H), AB-system ( A = 4.12, B = 4.02, JAB = 13.4, J = 2.0, 2 H, 6-H), 3.93 (d,
J = 8.6, 1 H, 1-H), 3.78 (d, J = 7.3, 1 H, 3-H), 1.58, 1.50, 1.41, 1.37 (4 s, 3 H each,
CH3)
AB part of ABX-system ( A = 4.28,
4.63–4.56 (m, 1 H, 4-H), 4.38 (dd, J = 2.5, 1.5, 1 H, 3-H), 4.25–4.20 (m, 1 H, 5-H),
AB-system ( A = 3.91, B = 3.74, JAB = 13.0, 2 H, 6-H), 3.65 (s, 2 H, 1-H), 1.54, 1.48,
1.43, 1.34 (4 s, 3 H each, CH3)
B = 4.19, JAB = 13.7, JAX = JBX < 1, 2 H, 1-
H), 2.24–2.14 (m, 2 H, 4-H), 1.50–1.22
(m, 14 H, CH2), 0.88 (t, J = 6.2, 3 H, CH3)
6.60–6.55 (m, 1 H, 1-H), 5.99–5.91 (m,
0.3 H, 3-H), 5.90–5.83 (m, 0.7 H, 3-H),
2.16–2.05 (m, 2 H, 4-H), 1.50–1.20 (m,
14 H, CH2), 0.86 (t, J = 6.4, 3 H, CH3)
5.85 (d, J = 3.9, 0.3 H, 1-H), 5.84 (d, J = 3.4, 0.7 H, 1-H), 4.58 (d, J = 3.4, 0.7 H,
2-H), 4.56 (d, J = 3.9, 0.3 H, 2-H), 4.36–4.26 (m, 1 H, 5-H), 4.25–4.15 (m, 2 H,
3-H, 4-H), 4.10–3.99 (m, 2 H, 6-H), 1.48, 1.41, 1.34, 1.28 (4 s, 3 H each, CH3)
D)-5a
6.56 (t, J = 2.2, 1 H, 1-H), 2.15–2.03 (m, 2
H, 4-H), 1.55–1.20 (m, 14 H, CH2), 0.85
(t, J = 6.7, 3 H, CH3)
5.83 (d, J = 3.7, 1 H, 1-H), 4.56 (d, J = 3.7, 0.5 H, 2-H), 4.53 (d, J = 3.7, 0.5 H, 2-H),
4.35–4.25 (m, 1 H, 5-H), 4.23–4.13 (m, 2 H, 3-H, 4-H), 4.08–3.97 (m, 2 H, 6-H),
1.46, 1.39, 1.31, 1.26 (4 s, 3 H each, CH3)
bc
6.81–6.74 (m, 1 H, 1-H), 5.91–5.81 (m, 1
H, 3-H), 2.12–2.01 (m, 2 H, 4-H), 1.47–
1.21 (m, 14 H, CH2), 0.88 (t, J = 6.6, 3 H,
CH3)
4.32 (dd, J = 7.5, 5.5, 1 H, 4-H), 4.22 (dd, J = 5.5, 2.5, 1 H, 5-H), AB-system
(
A = 4.13, B = 4.01, JAB = 13.4, 1.5 H, 6-H), AB-system ( A = 4.12, B = 4.02,
JAB = 13.4 Hz, 0.5 H, 6-H), AB-system ( A = 4.10, B = 3.90, JAB = 8.8, 2 H, 1-H),
3.86 (d, J = 7.5, 1 H, 3-H), 1.53, 1.50, 1.40, 1.37 (4 s, 3 H each, CH3)
c
6.69 (t, J = 2.4, 0.45 H, 1-H), 6.67 (t,
J = 2.7, 0.55 H, 1-H), 5.90–5.78 (m, 1 H,
3-H), 2.10–1.97 (m, 2 H, 4-H), 1.50–1.20
(m, 14 H, CH2), 0.86 (t, J = 6.6, 3 H, CH3)
4.62–4.55 (br d, J = 7.8, 1 H, 4-H), 4.38 (d, J = 2.4, 0.55 H, 3-H), 4.36 (d, J = 2.4,
0.45 H, 3-H), 4.22 (br d, J = 7.8, 1 H, 5-H), AB-system ( A = 3.91, B = 3.73,
JAB = 13.0, J = 1.7, 2 H, 6-H), AB-system ( A = 3.69, B = 3.57, JAB = 10.7, 1.1 H,
1-H), AB-system ( A = 3.66, B = 3.61, JAB = 10.7, 0.9 H, 1-H), 1.52, 1.45, 1.41, 1.32
(4 s, 3 H each, CH3)
Recorded on 500 MHz spectrometer.
Major isomer is S configurated with respect to allene moiety.11,
Major isomer is R configurated with respect to allene moiety.11
References and Notes
(6) Reissig, H.-U.; Hormuth, S.; Schade, W.; Okala Amombo,
M.; Watanabe, T.; Pulz, R.; Hausherr, A.; Zimmer, R. J.
Heterocycl. Chem. 2000, 37, 597.
(7) (a) Arnold, T.; Orschel, B.; Reissig, H.-U. Angew. Chem.,
Int. Ed. Engl. 1992, 31, 1033. (b) Arnold, T.; Orschel, B.;
Reissig, H.-U. Angew. Chem. 1992, 104, 1084.
(8) (a) Rochet, P.; Vatèle, J.-M.; Goré, J. Synlett 1993, 105.
(b) Rochet, P.; Vatèle, J.-M.; Goré, J. Synthesis 1994, 795.
(9) (a) Recently several 3-O-allenyl-substituted furanoses have
been synthesized and their conformations were studied by
NMR spectroscopy: Lysek, R.; Krajewski, P.; Urbanczyk-
Lipkowska, Z.; Furman, B.; Kaluza, Z.; Kozerski, L.;
Chmielewski, M. J. Chem. Soc., Perkin Trans. 2 2000, 61.
(b) Other applications: Harrington, P. E.; Tius, M. A. Org.
Lett. 2000, 2, 2447.
(1) General review: Zimmer, R. Synthesis 1993, 165.
(2) For recent synthetic work, see: (a) Pirrung, M. C.; Zhang, J.;
Morehead, A. T. Tetrahedron Lett. 1994, 35, 6229.
(b) Gröschl, D.; Niedermann, H.-P.; Meier, H. Chem. Ber.
1994, 127, 955. (c) Hojo, M.; Aihara, H.; Ito, H.; Hosomi,
A. Tetrahedron Lett. 1996, 37, 9241.
(3) For typical applications, see: (a) Unger, C.; Zimmer, R.;
Reissig, H.-U.; Würthwein, E.-U. Chem. Ber. 1991, 124,
2279. (b) Zimmer, R.; Reissig, H.-U.; Homann, K. J. Prakt.
Chem. 1995, 337, 521. (c) Angermann, J.; Homann, K.;
Reissig, H.-U.; Zimmer, R. Synlett 1995, 1014. (d)Zimmer,
R.; Hiller, F.; Reissig, H.-U. Heterocycles 1999, 50, 393.
(e) Zimmer, R.; Homann, K.; Angermann, J.; Reissig, H.-U.
Synthesis 1999, 1223.
(10) (a) Tius, M. A.; Hu, H.; Kawakami, J. K.; Busch-Petersen, J.
J. Org. Chem. 1998, 63, 5971. (b) Verkrujisse, H. D.;
Verboom, W.; Van Rijn, P. E.; Brandsma, L. J. Organomet.
Chem. 1982, 232, C1.
(11) The predominating configuration has been established by
subsequent transformation into a literature known amino
acid derivative and comparison of optical rotations:
Hausherr, A.; Reissig, H.-U. unpublished results.
(4) Hoff, S.; Brandsma, L.; Arens, J. F. Recl. Trav. Chim. Pays-
Bas 1968, 87, 916.
(5) (a) Hormuth, S.; Reissig, H.-U.; Dorsch, D. Angew. Chem.,
Int. Ed. Engl. 1993, 32, 1449. (b) Hormuth, S.; Reissig, H.-
U.; Dorsch, D. Angew. Chem. 1993, 105, 1513.
(c) Hormuth, S.; Schade, W.; Reissig, H.-U. Liebigs Ann.
Chem. 1996, 2001. .
Synthesis 2001, No. 9, 1377–1385 ISSN 0039-7881 © Thieme Stuttgart · New York