Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
lauric acid, myristic acid, palmitic acid and eicosanoic acid with
different carbon numbers (Fig. S5, ESI†).
Catal., 2018, 8, 5794-5798.
DOI: 10.1039/D0CC01307B
6. Y. Hou, S. Nagamatsu, K. Asakura, A. Fukuoka, H. Kobayashi,
Commun. Chem., 2018, 1, 41.
7. Z. Xu, J. P. Chada, L. Xu, D. Zhao, D. C. Rosenfeld, J. L. Rogers, I.
Hermans, M. Mavrikakis, G. W. Huber, ACS Catal., 2018, 8, 2488-
2497.
8. Z. Zhang, Q. Yang, H. Chen, K. Chen, X. Lu, P. Ouyang, J. Fu, J. G.
Chen, Green Chem., 2018, 20, 197-205.
9. Z. Zhang, H. Chen, C. Wang, K. Chen, X. Lu, P. Ouyang, J. Fu, Fuel,
2018, 230, 211-217.
10. Z. Zhang, Z. Chen, X. Gou, H. Chen, K. Chen, X. Lu, P. Ouyang, J.
Fu, Ind. Eng. Chem. Res., 2018, 57, 8443-8448.
11. A. John, B. s. Dereli, M. A. Ortuño, H. E. Johnson, M. A. Hillmyer,
C. J. Cramer, W. B. Tolman, Organometallics, 2017, 36, 2956-2964.
12. A. Chatterjee, V. R. Jensen, ACS Catal., 2017, 7, 2543-2547.
13. Z. Zhang, Z. Chen, H. Chen, X. Gou, K. Chen, X. Lu, P. Ouyang, J.
Fu, Sustain. Energy Fuels, 2018, 2, 1837-1843.
14. A. Chatterjee, S. H. Hopen Eliasson, K. W. Törnroos, V. R. Jensen,
ACS Catal., 2016, 6, 7784-7789.
15. A. Chatterjee, S. H. Hopen Eliasson, V. R. Jensen, Catal. Sci.
Technol., 2018, 8, 1487-1499.
16. J. A. Lopez-Ruiz, H. N. Pham, A. K. Datye, R. J. Davis, Appl. Catal.
A: Gen., 2015, 504, 295-307.
17. J. A. Lopez-Ruiz, R. J. Davis, Green Chem., 2014, 16, 683-694.
18. D. Wang, S. H. Hakim, D. M. Alonso, J. A. Dumesic, Chem.
Commun., 2013, 49, 7040-7042.
19. T. Ressler, R. E. Jentoft, J. Wienold, M. M. Günter, O. Timpe, J.
Phys. Chem. B, 2000, 104, 6360-6370.
20. F. Werfel, E. Minni, J. Phys. C: Solid State Phys., 1983, 16, 6091.
21. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N.
Dukstiene, A. Roberts, N. Fairley, Appl. Surf. Sci., 2015, 326, 151-161.
22. K. P. Reddy, N. B. Mhamane, M. K. Ghosalya, C. S. Gopinath, The
J. Phys. Chem. C, 2018, 122, 23034-23044.
23. F. M. Jin, H. Enomot, Energy Environ. Sci., 2011, 4, 382-397.
24. X. Y. Gao, X. Chen, J. G. Zhang, W. M. Guo, F. M. Jin, N. Yan, ACS
Sustainable Chem. Eng., 2016, 4, 3912-3920.
25. L. Y. Lyu, X. Zeng, J. Yun, F. Wei, F. M. Jin, Environ. Sci. Technol.
2014, 48, 6003-6009..
Further, the stearic acid conversion was studied over a range of
reaction times (4 h, 8 h, 12 h, 16 h, 20 h, and 24 h) at 190 °C to
determine the optimum reaction time. As seen in Fig. S4, ESI†, the
obtained yields of heptadecene progressively increased from 4 h to
16 h of reaction times (Fig. S6, ESI†). Further increase in the reaction
time beyond 16 h resulted in no additional increase in the yield of
heptadecene, revealing that 16 h of reaction time was enough for
maximum utilization of stearic acid. The effect of the mass of the
catalyst added on heptadecene was equally investigated through
variation of the catalyst amount from 0 - 40 mg. Among the different
masses of the catalyst investigated, the 30 mg of MoOx-600 catalyst
was found to be the most ideal concentration (Fig. S7, ESI†). By
introducing DPEphos and Ac2O into the heterogeneous catalytic
system, high selectivity to 1-heptadecene can be guaranteed over
different catalysts under different reaction conditions. It should be
noted that that inability of the yield of 1-heptadecene to increase
beyond 70% despite the prolonged reaction time and optimized
mass of the catalyst added, is mainly due to the formation of highly
concentrated unsaturated olefins (near 70% yield) and decarbonated
product CO, which occludes the catalyst pores and poisons the active
sites, as previously reported.12 More importantly, the MoOx-600
catalyst can be reused for at least three times without the significant
loss of catalytic activity (Fig. S8, ESI†).
Summarily, a partially reduced MoOx-600 catalyst that shows the
co-existence of different Mo species (0, +4 ~+6) was successfully
developed and investigated for decarbonylative dehydration of
stearic acid. This catalyst exhibited an outstanding catalytic
performance toward decarbonylative dehydration of stearic acid and
achieved a yield of heptadecene close to 75.0% with selectivity to 1-
heptadecene production close 95%. Notably, the catalytic activity of
this partially reduced MoOx-600 catalyst is higher than that of the
non-reduced MoO3 and over-reduced MoOx-700 catalysts, making it
suitable for the production of linear α-olefins from biomass-derived
fatty acids.
J. Fu was supported by the National Natural Science Foundation
of China (No. 21978259), the Zhejiang Provincial Natural Science
Foundation of China (No. LR17B060002), and the Fundamental
Research Funds for the Central Universities.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1. S. H. Hopen Eliasson, A. Chatterjee, G. Occhipinti, V. R. Jensen,
ACS Sustain. Chem. Eng., 2019, 7, 4903-4911.
2. L. Guo, J. Sun, X. Ji, J. Wei, Z. Wen, R. Yao, H. Xu, Q. Ge, Commun.
Chem., 2018, 1, 11.
3. C. M. Killian, L. K. Johnson, M. Brookhart, Organometallics, 1997,
16, 2005-2007.
4. J. Wang, Y. Xu, G. Ma, J. Lin, H. Wang, C. Zhang, M. Ding, ACS Appl.
Mater. Interfaces, 2018, 10, 43578-43587.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins