Page 13 of 15
Journal of the American Chemical Society
We note that our observation of second order methanol
Corresponding Author
1
2
3
4
5
6
7
8
oxidation indicates that the concentration of methoxy
radicals scales with the surface hole density, implying that
under steady state conditions an equilibrium is formed
between these species. This mechanism is also consistent
with the observation of methoxy radicals during methanol
oxidation on oxide surfaces that has been reported previ-
ously.11,23,31,38 Surface hematite holes have been assigned
previously to Fe(IV)=O species;40 methanol oxidation re-
quires two of these species to diffuse together to form the
reactive species as indicated in Figure 6. This mechanism
is in accordance with our observed second order behavior
under technologically relevant conditions reported herein
of 1 sun illumination. Our observation of a similar, second
order, rate law for methanol oxidation on TiO2 suggests
that the same reaction mechanism is also likely to operate
on this metal oxide, with the higher rate constant result-
ing from the deeper valence band in titania compared to
hematite.
Present address
⊥ Physical Biosciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, USA.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We acknowledge Dr. Robert Godin for helpful discussions
and financial support from the European Research Council
(project Intersolar 291482), Swiss National Science Founda-
tion (project: 140709) and Swiss Federal Office for Energy
(project: PECHouse 3, contract number SI/500090–03).
C.A.M thanks COLCIENCIAS for funding, L.F. thanks the EU
for a Marie Curie fellowship (658270) and E.P. thanks the
EPRSC for a DTP scholarship.
REFERENCES
(1)
(2)
Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.
Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. J. Mater.
Chem. A 2015, 3, 2485.
CONCLUSIONS
The use of organic oxidation substrates can substantial-
ly reduce the requirement of strong anodic potentials for
PEC hydrogen evolution, as well as potentially enable the
synthesis of useful organic compounds. As a study case,
we have reported kinetic and mechanistic analyses for the
selective oxidation of a model substrate, methanol to
formaldehyde, on titania and hematite photoanodes un-
der PEC working conditions. The methanol oxidation
reaction was found to be second order with respect to the
density of surface holes, indicating a reaction mechanism
where both steps of methanol oxidation are driven by
valence band holes. The second oxidation, involving a C-
H bond breaking, is the rate limiting step. Remarkably,
this oxidation is observed to proceed with near unity Far-
adaic efficiency, suggesting a potentially attractive route
to formaldehyde synthesis from methanol. Our observa-
tion of second order behavior also has important implica-
tions for technological applications, as it implies that the
kinetics, and therefore potentially the efficiency, of this
widely used reaction will be super-linearly dependent
upon the surface density of accumulated holes, with im-
plications for photoanode design (e.g. surface area) and
optimum operational light intensities.
(3)
(4)
Brink, G.-J. ten; Arends, I. W. C. E.; Sheldon, R. A. Science
2000, 287, 1636.
Palmisano, G.; Garcia-Lopez, E.; Marci, G.; Loddo, V.;
Yurdakal, S.; Augugliaro, V.; Palmisano, L. Chem. Commun.
2010, 46, 7074.
(5)
Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.;
Lau, V. W.; Lotsch, B. V.; Durrant, J. R.; Reisner, E. J. Am.
Chem. Soc. 2016, 138, 9183.
(6)
(7)
(8)
(9)
Yang, J.; Shen, X.; Wei, J.; Zhang, L.; Zhao, D.; Yao, B. Catal.
Sci. Technol. 2016, 6, 7604.
Purnima, T.; Ruberu, A.; Nelson, N. C.; Slowing, I. I.; Vela, J.
J. Phys. Chem. Lett. 2012, 3, 2798.
Antoniadou, M.; Lianos, P. Appl. Catal. B Environ. 2010, 99,
307.
Kafizas, A.; Wang, X.; Pendlebury, S. R.; Barnes, P.; Ling,
M.; Sotelo-Vazquez, C.; Quesada-Cabrera, R.; Li, C.; Parkin,
I. P.; Durrant, J. R. J. Phys. Chem. A 2016, 120, 715.
Pendlebury, S. R.; Barroso, M.; Cowan, A. J.; Sivula, K.;
Tang, J.; Grätzel, M.; Klug, D.; Durrant, J. R. Chem.
Commun. 2011, 47, 716.
Wahl, A.; Ulmann, M.; Carroy, A.; Jermann, B.; Dolata, M.;
Kedzierzawski, P.; Chatelain, C.; Monnier, A.; Augustynski,
J. J. Electroanal. Chem. 1995, 396, 41.
(10)
(11)
(12)
(13)
Micka, K.; Gerischer, H. J. Electroanal. Chem. 1972, 38, 397.
Soares, A. P. V.; Portela, M. F.; Kiennemann, A. Catal. Rev.
2005, 47, 125.
(14)
(15)
Wang, X.; Kafizas, A.; Li, X.; Moniz, S. J. A.; Reardon, P. J.
T.; Tang, J.; Parkin, I. P.; Durrant, J. R. J. Phys. Chem. C
2015, 119, 10439.
Le Formal, F.; Pastor, E.; Tilley, S. D.; Mesa, C. A.;
Pendlebury, S. R.; Grätzel, M.; Durrant, J. R. J. Am. Chem.
Soc. 2015, 137, 6629.
ASSOCIATED CONTENT
Supporting Information.
Current-voltage curves for different concentrations of meth-
anol in 0.1M NaOH on α-Fe2O3 and TiO2, formaldehyde
quantification details are presented. PIA and TPC signals
measured at 0.00 V for hematite and -0.80 V for anatase, as
well as, PIA and TPC signals for the oxidation of CD3OD on
hematite at 0.55 V are shown. The effect of recombination on
PIA decays, an initial rates analysis for methanol oxidation
and a comparison of rate law analysis for water and methanol
oxidation are also presented. This material is available free of
(16)
(17)
(18)
Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128,
15714.
Xiao-e, L.; Green, A. N. M.; Haque, S. A.; Mills, A.; Durrant,
J. R. J. Photochem. Photobiol. A Chem. 2004, 162, 253.
Ma, Y.; Pendlebury, S. R.; Reynal, A.; Le Formal, F.; Durrant,
J. R. Chem. Sci. 2014, 5, 2964.
(19)
(20)
Jacobsen, N. W.; Dickinson, R. G. Anal. Chem. 1974, 46, 298.
Klahr, B.; Gimenez, S.; Zandi, O.; Fabregat-Santiago, F.;
Hamann, T. ACS Appl. Mater. Interfaces 2015, 7, 7653.
Nozik, A. J.; Memming, R. J. Phys. Chem. 1996, 100, 13061.
Chen, S.; Wang, L.-W. Chem. Mater. 2012, 24, 3659.
Batista, E. A.; Malpass, G. R. P.; Motheo, A. J.; Iwasita, T. J.
(21)
(22)
(23)
AUTHOR INFORMATION
ACS Paragon Plus Environment