Page 9 of 10
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
A. Sporzyński, Chem. Rev. 2015, 115, 5D2O24I:-1502.14073V.9ie/wD0AOrtiBcl0e0O5n7li2nJe
For recent examples of applications in: Catalysis: (a) S.
Kusano, S. Miyamoto, A. Matsuoka, Y. Yamada, R. Ishikawa,
O. Hayashida, Eur. J. Org. Chem. 2020, Early Access, DOI:
10.1002/ejoc.201901749. Materials science: (b) Y. Chen, W.
D. Wang, D. Wu, H. B. Zeng, D. G. Hall, R. Narain, ACS Appl.
Mater. Interfaces 2019, 11, 44742-44750; (c) D. Wu, W. D.
Wang, D. Diaz-Dussan, Y. Y. Peng, Y. J. Chen, R. Narain, D. G.
Hall, Chemistry of Materials 2019, 31, 4092-4102; (d) Y. J.
Chen, D. Diaz-Dussan, D. Wu, W. D. Wang, Y. Y. Peng, A. B.
Asha, D. G. Hall, K. Ishihara, R. Narain, ACS Macro Letters
synthesis was optimized, which exploits the hydrophilicity of
the final product with a simple purification that circumvents
the need for chromatography. Through several NMR
5
experiments, compound
hydroxyalkyl arylboronic acid structure
effectively prevented to undergo a dehydrative cyclization as a
result of unfavorable geometry. Boronic acid was found to
2
was found to exist in the open ortho
2-I, a form that is
2-I
have a pKa of 7.5 that is similar to that of benzoxaborole (7.2),
and significantly lower than traditional boronic acids. The
relatively low pKa of compound 2-I is proposed to be the result
of stabilization of the trihydroxyborate conjugate base by the
hydrogen-bond donor ability of the ortho hydroxyalkyl unit.
This low pKa favors solubility in water, which increases the
2018,
7
, 904-908.
6
7
8
S. Vshyvenko, M. L. Clapson, I. Suzuki, D. G. Hall, ACS Med.
Chem. Lett. 2016,
7
, 1097−1101.
S. Luliński, J. Serwatowski, J. Organomet. Chem. 2007, 692
,
potential to use compound
In this regard, compound
2
-
I
in aqueous biological systems.
was found to conjugate
2924.
2-I
X. Li, Y.-K. Zhang, Y. Liu, C. Z. Ding, Y. Zhou, Q. Li, J. J. Plattner,
S. J. Baker, S. Zhang, W. M. Kazmierski, L. L. Wright, G. K.
Smith, R. M. Grimes, R. M. Crosby, K. L. Creech, L. H.
Carballo, M. J. Slater, R. L. Jarvest, P. Thommes, J. A.
Hubbard, M. A. Convery, P. M. Nassau, W. McDowell, T. J.
Skarzynski, X. Qian, D. Fan, L. Liao, Z.-J. Ni, L. E. Pennicott, W.
Zou, J. Wright, Bioorganic & Medicinal Chemistry Letters
2010, 20, 5695.
According to our survey of the literature, none of derivatives
4a-f were isolated and characterized. Only fluoradene
compounds similar to 4f were reported: B. McDowell, H.
Rapoport, J. Org. Chem. 1972, 37, 3261.
effectively with amines to form stable hemiaminal structures,
including highly effective and irreversible reaction with
lysozyme. Complexation of reagent
2 with cysteine was also
demonstrated. Surprisingly, cysteine induced an open
structure containing a free hydroxymethyl arm, as the amino
and thiol group bind preferentially onto the formyl group to
form a N,S-acetal. As a first-of-its-kind permanently open
9
“frustrated benzoxaborole”, compound
2-I demonstrates
unique properties that can be further explored to meet the
ever-growing needs and applications of novel boron containing
drugs and bioconjugates.
10 S. Luliński, I. Madura, J. Serwatowski, H. Szatyłowicz, J.
Zachara, New J. Chem. 2007, 31, 144–154.
11 G. A. Molander, S. L. J. Trice, S. M. Kennedy, S. D. Dreher, M.
T. Tudge, J. Am. Chem. Soc. 2012, 134, 11667.
12 M. Dowlut, D. G. Hall, J. Am. Chem. Soc. 2006, 128, 4226-
4227.
Conflicts of interest
13 P. M. S. D. Cal, J. B. Vicente, E. Pires, A. V. Coelho, L. F.
Veiros, C. Cordeiro, P. M. P. Gois, J. Am. Chem. Soc. 2012,
134, 10299–10305.
There are no conflicts to declare.
14 A. Bandyopadhyay, J. Gao, Chem. Eur. J. 2015, 21, 14748–
14752.
Acknowledgements
15 For Reviews: (a) B. Akgun, D. G. Hall, Angew. Chem. Int. Ed.
2018, 57,13028–13044; (b) S. Cambray, J. Gao, Acc. Chem.
Res. 2018, 51, 2198-2206; (c) J. P. M. Antonio, R. Russo, C. P.
Carvalho, P. M. S. D. Cal, P. M. P. Gois, Chem. Soc. Rev. 2019,
48, 3513-3536.
This work was funded by the Natural Sciences and Engineering
Research Council (NSERC) of Canada (Discovery Grant to DGH)
and the University of Alberta. The authors thank Dr. Timothy
Morgan and Jonah Curl for help in the early stage of
16 L. Zhu, S. H. Shabbir, M. Gray, V. M. Lynch, S. Sorey, E. V.
Anslyn, J. Am. Chem. Soc. 2006, 128, 1222.
developing a synthesis of compound 2, Mr. Ed Fu (HPLC), and
Mr. Mark Miskolzie (NMR Facility) for their help and advice.
17 A. Bandyopadhyay, S. Cambray, J. Gao, Chem. Sci. 2016,
7
4589.
18 H. Faustino, M. J. S. A. Silva, L. F. Veiros, G. J. L. Bernardes, P.
Notes and references
§ See Supporting Information for details.
M. P. Gois, Chem. Sci. 2016, 7, 5052.
19 For a successful example of 1,2-aminoalcohol complexation
using tris(hydroxymethyl)aminomethane, see: K. Li, M. A.
Kelly, J. Gao, Org. Biomol. Chem. 2019, 17, 5908-5912.
1
For general reviews on boron therapeutics: (a) S. J. Baker, C.
Z. Ding, T. Akama, Y.-K. Zhang, V. Hernandez, Y. Xia, Future
Med. Chem. 2009,
1, 1275-1288; (b) A. Nocentini, C. T.
Supuran, J.-Y. Winum, Expert Opinion on Therapeutic Patents
2018, 28, 493; (c) G. F. S. Fernandes, W. A. Denny, J. L. Dos
Santos, Eur. J. Med. Chem. 2019, 179, 791-804.
S. J. Baker, Y.-K. Zhang, T. Akama, A. Lau, H. Zhou, V.
Hernandez, W. Mao, M. R. K. Alley, V. Sanders, J. J. Plattner,
J. Med. Chem. 2006, 49, 4447−4450.
T. Akama, S. J. Baker, Y.-K. Zhang, V. Hernandez, H. Zhou, V.
Sanders, Y. Freund, R. Kimura, K. R. Maples, J. J. Plattner,
Bioorg. Med. Chem. Lett. 2009, 19, 2129–2132.
For reviews focused on benzoxaboroxoles: (a) J. Zhang, M.
Zhu, Y. Lin, H. Zhou, Sci. China Chem. 2013, 56, 1372-1381;
(b) C. T. Liu, J. W. Tomsho, S. J. Benkovic, Bioorg. Med. Chem.
2
3
4
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins