J. Am. Chem. Soc. 1996, 118, 2101-2102
A Thiolate-Bridged, Fully Delocalized
2101
Mixed-Valence Dicopper(I,II) Complex That Models
the CuA Biological Electron-Transfer Site
Robert P. Houser, Victor G. Young, Jr., and
William B. Tolman*
Department of Chemistry, UniVersity of Minnesota
207 Pleasant Street SE, Minneapolis, Minnesota 55455
ReceiVed NoVember 9, 1995
Nitrous oxide reductase (N2OR) and cytochrome c oxidase
(CcO) catalyze the reductions of N2O to N2 during microbial
denitrification and of O2 to H2O during cellular respiration,
respectively.1,2 These disparate metalloenzymes have in com-
mon an unusual copper site, CuA, that functions analogously to
the ubiquitous type 1 monocopper centers3 to transfer electrons
during enzyme turnover. Controversy surrounding the structure
Figure 1. Synthesis of 1 and a representation of its X-ray crystal
structure showing one of the two chemically similar binuclear cations
generated from the two crystallographically independent half-dimers
present in the unit cell (50% ellipsoids, hydrogen atoms omitted for
clarity). Selected bond distances (Å) and angles (deg) for this cation:
Cu1-S1, 2.250(1); Cu1-S1′, 2.292(1); Cu1-N1, 2.115(3); Cu1-N2,
2.125(3); Cu1‚‚‚Cu1′, 2.9306(9); S1‚‚‚S1′, 3.480(2); S1-Cu1-S1′,
99.64(3); S1-Cu1-N1, 149.23(9); S1-Cu1-N2, 90.25(9); S1′-Cu1-
N1, 107.64(9); S1′-Cu1-N2, 122.20(9); N1-Cu1-N2, 87.2(1); Cu1-
S1-Cu1′, 80.36(3). The similar parameters for the other cation are
presented in the supporting information.
of CuA appears to have been resolved by recent X-ray crystal-
lographic results4 and spectroscopic and biochemical studies of
N2OR, CcO, and engineered CuA sites.5 The combined data
support a novel dithiolate-bridged, delocalized mixed-valence
(Cu1.5Cu1.5) resting-state formulation with four-coordinate,
distorted tetrahedral copper ions in close proximity ( 2.6 Å
apart). A key spectroscopic signature that supports the delo-
calized nature of the site is an EPR signal with seven-line
hyperfine coupling patterns in its low-field components arising
Herein we report the successful synthesis and characterization
of a unique molecule with a {Cu2(µ-SR)2}+ core that closely
mimics the resting-state CuA geometry, oxidation level, and high
degree of electron delocalization as reflected by EPR spectros-
copy.
Our synthesis of the title complex hinged on the use of the
new ligand NaLiPrdacoS, which was prepared from 1,5-bis(p-
toluenesulfonyl)diazacyclooctane by using precedented N-
macrocycle deprotection and alkylation strategies.10,11 Admix-
ture of a 3:2 ratio of NaLiPrdacoS and Cu(O3SCF3)2 in MeOH,
followed by removal of solvent, extraction with CH2Cl2 to
remove byproducts, and crystallization from MeOH/Et2O,
yielded (LiPrdacoSCu)2(O3SCF3) (1), analytically pure in 60%
yield as deep blue crystals (Figure 1).10 The 3:2 ligand-metal
stoichiometry is critical for obtaining the pure product, as the
3
from spin interactions with both I ) /2 copper ions.5h The
structure represents a fundamentally new type of electron-
transfer site in biology and is a novel entity from a purely
inorganic chemical point of view as well. Although several
complexes with bis(µ-thiolato)dicopper(I,I) cores are known,6
fully delocalized “class III” 7 mixed-valence dicopper(I,II)
complexes are extremely rare,8,9 and no example of such a
species bridged by thiolates has appeared in the literature.
(1) Babcock, G. T.; Wikstro¨m, M. Nature 1992, 356, 301-309.
(2) Kroneck, P. M. H.; Beuerle, J.; Schumacher, W. In Metal-dependent
ConVersion of Inorganic Nitrogen and Sulfur Compounds; Kroneck, P. M.
H., Beuerle, J., Schumacher, W., Eds.; Marcel Dekker: New York, 1992;
Vol. 28, pp 455-505.
(3) (a) Sykes, A. G. AdV. Inorg. Chem. 1991, 36, 377-408. (b) Adman,
E. T. AdV. Protein Chem. 1991, 42, 145-197.
(4) (a) Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.;
Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa,
S. Science 1995, 269, 1069-1074. (b) Iwata, S.; Ostermeier, C.; Ludwig,
B.; Michel, H. Nature 1995, 376, 660-669. (c) Wilmanns, M.; Lappalainen,
P.; Kelly, M.; Saver-Eriksson, E.; Saraste, M. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 11949-11951.
(5) (a) Malmstro¨m, B. G.; Aasa, R. FEBS Lett. 1993, 325, 49-52 and
references therein. (b) Lappalainen, P.; Saraste, M. Biochim. Biophys. Acta
1994, 1187, 222-225. (c) von Wachenfeldt, C.; de Vries, S.; van der Oost,
J. FEBS Lett. 1994, 340, 109-113. (d) Lappalainen, P.; Aasa, R.;
Malmstro¨m, B. G.; Saraste, M. J. Biol. Chem. 1993, 268, 26416-26421.
(e) Blackburn, N. J.; Barr, M. E.; Woodruff, W. H.; van der Oost, J.; de
Vries, S. Biochemistry 1994, 33, 10401-10407. (f) Henkel, G.; Mu¨ller,
A.; Weissgra¨ber, S.; Buse, G.; Soulimane, T.; Steffens, G. C. M.; Nolting,
H.-F. Angew. Chem., Int. Ed. Engl. 1995, 34, 1488-1492. (g) Farrar, J.
A.; Thomson, A. J.; Cheesman, M. R.; Dooley, D. M.; Zumft, W. G. FEBS
Lett. 1991, 294, 11-15. (h) Antholine, W. E.; Kastrau, D. H. W.; Steffens,
G. C. M.; Buse, G.; Zumft, W. G.; Kroneck, P. M. H.; Eur. J. Biochem.
1992, 209, 875-881. (i) Andrew, C. R.; Han, J.; Vries, S. d.; van der
Oost, J.; Averill, B. A.; Loehr, T. M.; Sanders-Loehr, J. J. Am. Chem. Soc.
1994, 116, 10805-10806. (j) Hulse, C. L.; Averill, B. A. Biochem. Biophys.
Res. Commun. 1990, 166, 729-735.
(8) Mixed-valence multicopper complexes usually are completely valence
localized (class I), but in some instances spectroscopic evidence for
delocalization of unpaired spin in a binuclear complex or dicopper protein
active site, usually at elevated temperatures (>77 K), has been observed
(class II behavior). For examples, see: (a) Dunaj-Jurco, M.; Ondrejovic,
G.; Melnik, M. Coord. Chem. ReV. 1988, 83, 1-28. (b) Long, R. C.;
Hendrickson, D. N. J. Am. Chem. Soc. 1983, 105, 1513-1521. (c) Gagne´,
R. R.; Koval, C. A.; Smith, T. J.; Cimolino, M. C. J. Am. Chem. Soc. 1979,
101, 4571-4580. (d) Westmoreland, T. D.; Wilcox, D. E.; Baldwin, M.
J.; Mims, W. B.; Solomon, E. I. J. Am. Chem. Soc. 1989, 111, 6106-
6123. (e) Aasa, R.; Deinum, J.; Lerch, K.; Reinhammar, B. Biochim.
Biophys. Acta 1978, 535, 287-298.
(9) Complete valence delocalization (class III behavior) mediated by a
copper-copper bond has been reported: (a) Harding, C.; McKee, V.;
Nelson, J. J. Am. Chem. Soc. 1991, 113, 9584-9685. (b) Barr, M. E.;
Smith, P. H.; Antholine, W.; Spencer, B. J. Chem. Soc., Chem. Commun.
1993, 1649-1652. (c) Harding, C.; Nelson, J.; Symons, M. C. R.; Wyatt,
J. J. Chem. Soc., Chem. Commun. 1994, 2499-2500.
(10) Cyclization of the disodium salt of N,N-bis(p-toluenesulfonyl)-
propane-1,3-diamine with 1,3-bis(p-toluenesulfonyloxy)propane in DMF
afforded 1,5-bis(p-toluenesulfonyl)diazacyclooctane.10a Single detosylation
with 30% HBr/HOAc,10b alkylation with isopropyl bromide, and subsequent
detosylation with H2SO4 afforded 1-isopropyl-1,5-diazacyclooctane. Func-
tionalization with thiirane followed by deprotonation with NaH yielded
NaLiPrdacoS 11
See supporting information for synthetic details and charac-
.
terization data for all new compounds, including 1. (a) Atkins, T. J.;
Richman, J. E.; Oettle, W. F. Organic Synthesis; John Wiley & Sons: New
York, 1988; Collect. Vol. 6, pp 652-662. (b) Sessler, J. L.; Sibert, J. W.
Tetrahedron 1993, 49, 8727-8738.
(6) (a) Strange, A.; Kaim, W. Z. Naturforsch. B 1995, 50, 115-122.
(b) Chadha, R. K.; Kumar, R.; Tuck, D. G. Can. J. Chem. 1987, 65, 1336-
1342.
(7) Robin, M. B.; Day, P. AdV. Inorg. Chem. Radiochem. 1967, 10, 247-
422.
(11) Houser, R. P.; Halfen, J. A.; Young, V. G., Jr.; Blackburn, N. J.;
Tolman, W. B. J. Am. Chem. Soc. 1995, 117, 10745-10746.
0002-7863/96/1518-2101$12.00/0 © 1996 American Chemical Society