Journal of the American Chemical Society
Page 4 of 6
respectively. As expected, a complete switch of diastereoselec-
Corresponding Author
1
2
3
4
5
6
7
8
tivity was observed along with excellent yields (Eq. 1); moreo-
ver, the de values are nearly identical to those obtained with
racemic 1n.
Notes
The authors declare no competing financial interests.
We attempted to briefly demonstrate the synthetic poten-
tial of this chemistry toward the synthesis of C-glycosides. As
shown in Eq. 2, the partially protected allene-polyol 1p was
prepared from D-xylose. When it was subject to the gold catal-
ysis with (S)-L2 as ligand, the vinyl C-xyloside α-2p was
formed exclusively in 82% yield. With the ligand antipode, β-
2p was obtained in 76% yield and in a 6.5:1 diastereoselectiv-
ity. As the intrinsic diastereoselectivity with WangPhos favors
α-2p by a ratio of 16:1, this fair yet serviceable selectivity for
the much disfavored β-isomer is noteworthy and can be syn-
thetically useful. Notably, when JohnPhos was used as gold lig-
and, the reaction was messy and little 2p was formed, which
reveals the versatility of our designed ligands for cyclizations
regardless asymmetric induction.
ACKNOWLEDGMENT
We thank Regione Lombardia – Cariplo Foundation Grant
(Sottomisura B/2016), POR FESR 2014-2020/Innovazione e
competitività, progetto VIPCAT and NSF CHE-1301343 for
finanical support and NIH S10OD012077 for the purchase of a
400 MHz NMR spectrometer. ZW thanks the Mellichamp Ac-
ademic Initiative in Sustainability for a fellowship.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem. Int. Ed.
1995, 34, 1059-1070.
(2) For selected reviews, see:a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res.
1997, 30, 97-102; b) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007,
40, 1300-1308; c) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129,
11336-11337; d) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu,
G. C. Science 2016, 354, 1265-1269; e) Kolb, H. C.; VanNieuwenhze,
M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547; f) Johnson,
R. A.; Sharpless, K. B. In Catal. Asymmetric Synth.; 2nd ed. 2000, p
231.
(3) For selected reviews, see: a) Sawamura, M.; Ito, Y. Chem. Rev. 1992,
92, 857-871; b) Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102,
2187-2210; c) Ma, J.-A.; Cahard, D. Angew. Chem. Int. Ed. 2004, 43,
4566-4583; d) Brodbeck, D.; Broghammer, F.; Meisner, J.; Klepp, J.;
Garnier, D.; Frey, W.; Kästner, J.; Peters, R. Angew. Chem. Int. Ed.
2017, 56, 4056-4060; e) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am.
Chem. Soc. 1986, 108, 6405-6406.
(4) For selected reviews, see:a) Grützmacher, H. Angew. Chem. Int. Ed.
2008, 47, 1814-1818; b) Askevold, B.; Roesky, H. W.; Schneider, S.
ChemCatChem 2012, 4, 307-320; c) Khusnutdinova, J. R.; Milstein, D.
Angew. Chem. Int. Ed. 2015, 54, 12236-12273; d) Trincado, M.;
Grützmacher, H. In Cooperative Catalysis; Wiley-VCH Verlag GmbH
& Co. KGaA: 2015, p 67.
(5) For selected reviews, see: a) Sengupta, S.; Shi, X. Chemcatchem 2010,
2, 609-619; b) Zi, W.; Dean Toste, F. Chem. Soc. Rev. 2016, 45, 4567-
4589.
(6) For examples, see: a) Zhang, Z.; Widenhoefer, R. A. Angew. Chem. Int.
Ed. 2007, 46, 283-285; b) Ji, K.; Zheng, Z.; Wang, Z.; Zhang, L. Angew.
Chem., Int. Ed. 2015, 54, 1245-1249; c) Liu, F.; Qian, D.; Li, L.; Zhao,
X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669-6672.
(7) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317,
496-499.
(8) For examples, see: a) Handa, S.; Lippincott, D. J.; Aue, D. H.; Lipshutz,
B. H. Angew. Chem. Int. Ed. 2014, 53, 10658-10662; b) Aikawa, K.;
Kojima, M.; Mikami, K. Adv. Synth. Catal. 2010, 352, 3131-3135.
(9) a) Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338-
6361; b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461-
1473; c) Nieto-Oberhuber, C.; Lopez, S.; Munoz, M. P.; Cardenas, D.
J.; Bunuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem., Int. Ed.
2005, 44, 6146-6148; d) Herrero-Gómez, E.; Nieto-Oberhuber, C.;
López, S.; Benet-Buchholz, J.; Echavarren, A. M. Angew. Chem., Int.
Ed. 2006, 45, 5455-5459.
(10)a) Wang, Z.; Ying, A.; Fan, Z.; Hervieu, C.; Zhang, L. ACS Catal. 2017,
7, 3676-3680; b) Wang, Z.; Wang, Y.; Zhang, L. J. Am. Chem. Soc.
2014, 136, 8887–8890; c) Wang, Y.; Wang, Z.; Li, Y.; Wu, G.; Cao,
Z.; Zhang, L. Nature Commun. 2014, doi: 10.1038/ncomms4470.
(11)a) Arbour, J. L.; Rzepa, H. S.; Contreras-García, J.; Adrio, L. A.;
Barreiro, E. M.; Hii, K. K. Chem. - Eur. J. 2012, 18, 11317-11324; b)
Le Boucher d’Herouville, F.; Millet, A.; Scalone, M.; Michelet, V.
Synthesis 2016, 48, 3309-3316.
In conclusion, we have achieved for the first time an accel-
erative asymmetric gold catalysis via chiral ligand metal coop-
eration. An asymmetrically positioned remote amide group in
the designed chiral binaphthyl-based ligand plays the essen-
tial role of a general base catalyst and selectively accelerates
the cyclizations of 4-allen-1-ols into one prochiral allene face.
The reactions are mostly highly enantioselective with achiral
substrates, and due to the accelerated nature of the catalysis
catalyst loadings as low as 100 ppm are allowed. With a preex-
isting chiral center at any of the backbone sp3-carbons, the re-
action remained highly efficient and most importantly main-
tained excellent allene facial selectivities regardless of the sub-
strate stereochemistry. Of exceptional synthetic significance
is that all four stereoisomers of versatile 2-vinyltetrahydrofu-
rans can be prepared with exceedingly high selectivity by us-
ing different combinations of ligand and substrate enantio-
mers. The underpinning design of this chemistry offers new
yet rational strategies to tackle challenging asymmetric gold
catalysis, which to date has relied on decelerative chiral steric
approaches.
ASSOCIATED CONTENT
Supporting Information
Experimental details, compound characterization and spectra.
This material is available free of charge via the Internet at
(12)Teller, H.; Flügge, S.; Goddard, R.; Fürstner, A. Angew. Chem., Int. Ed.
2010, 49, 1949-1953.
(13)Lü, B.; Jiang, X.; Fu, C.; Ma, S. J. Org. Chem. 2009, 74, 438-441.
(14)Crabbe, P.; Fillion, H.; Andre, D.; Luche, J.-L. J. Chem. Soc., Chem.
Commun. 1979, 859-860.
AUTHOR INFORMATION
ACS Paragon Plus Environment