N. Merkley et al. / Tetrahedron Letters 43 (2002) 1927–1929
1929
References
24. Reid, D. L.; Hernandez-Trujillo, J.; Warkentin, J. J.
Phys. Chem. A 2000, 104, 3398.
1. 2,2-Dialkoxyoxadiazolines are now well established as
thermal sources of dialkoxycarbenes. Warkentin, J. J.
Chem. Soc., Perkin Trans. 1 2000, 2161 and references
cited therein.
25. Reid, D. L.; Warkentin, J. J. Chem. Soc., Perkin Trans. 2
2000, 1980.
26. Fiorentino, M.; Testafarri, L.; Tiecco, M.; Troisi, L. J.
Org. Chem. 1976, 41, 173.
2. As a mixture of diastereomers (3:1) that were not sepa-
rated. Synthesis of 11 by acid catalyzed reaction of
1-phenyl-1,3-propanediol with benzaldehyde gave the
major diastereomer only.
3. For trapping of carbenes with alcohols see, for example:
(a) Ho¨mberger, G.; Kirmse, W.; Lelgemann, R. Chem.
Ber. 1991, 124, 1867; (b) Belt, S. T.; Bohne, C.; Charette,
G.; Sugamori, S. E.; Scaiano, J. C. J. Am. Chem. Soc.
1993, 115, 2200; (c) Dix, E. J.; Goodman, J. L. J. Phys.
Chem. 1994, 98, 12609; (d) Kirmse, W. In Advances In
Carbene Chemistry; Brinker, U. H., Ed.; JAI Press:
Greenwich, 1994.
27. Corrected for the fact that methyl azodicarboxylate yields
two methoxycarbonyl radicals per mole.
28. McLean, A. D.; Ellinger, Y. Chem. Phys. 1985, 94, 25.
29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V.
G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J.
C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin,
K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;
Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.;
Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov,
B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gon-
zalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.;
Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian
98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998.
30. (a) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100,
16502; (b) Wong, M. W. Chem. Phys. Lett. 1996, 256,
391.
4. Identified by means of 1H and 13C NMR spectroscopy, as
well as mass spectrometry.
5. Prepared by the acid catalyzed reaction of 2,2-dimethyl-
1,3-propanediol with benzaldehyde.
6. Dialkoxycarbenes are nucleophiles that might be
expected to attack 2,4-dinitrofluorobenzene (Sanger’s
reagent), for example. Dimethoxycarbene does that, but
the substitution is inefficient. Ross, J. P.; Couture, P.;
Warkentin, J. Can. J. Chem. 1997, 75, 1331.
7. Borden, W. T.; Hoo, L. H. J. Am. Chem. Soc. 1978, 100,
6274.
8. McDonald, R. M.; Krueger, R. A. J. Org. Chem. 1966,
31, 488.
9. Crawford, R. J.; Raap, R. Proc. Chem. Soc. 1963, 370.
10. Lemal, D. M.; Lovald, R. A.; Harrington, R. W. Tetra-
hedron Lett. 1965, 2779.
31. Lowe, J. P. In Progress in Physical Organic Chemistry;
Streitwieser, A., Jr.; Taft, R. W., Eds.; Interscience Pub-
lishers: New York, 1968; Vol. 6.
32. There is approximately a 1-in-4 chance that radicals
which have become separated before encountering one
another again will be in the singlet state. Gibian, M. J.;
Corley, R. C. Chem. Rev. 1973, 73, 441.
11. Lemal, D. M.; Gosselink, E. P.; McGregor, S. D. J. Am.
Chem. Soc. 1966, 88, 582.
12. Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1971, 10,
529.
33. Radical–radical coupling of singlet 6, which should have
a small barrier at most, is expected to occur with a rate
13. Hoffmann, R. W.; Hirsch, R.; Fleming, R.; Reetz, M. T.
constant in excess of 1010 s−1
.
Chem. Ber. 1972, 105, 3532.
14. Wong, T.; Warkentin, J.; Terlouw, J. K. Int. J. Mass
Spectrom. Ion Process. 1992, 115, 33.
34. Simakov, P. A.; Martinez, F. N.; Horner, J. H.; New-
comb, M. J. Org. Chem. 1998, 63, 1226.
35. Pfenniger, J.; Heuberger, C.; Graf, W. Helv. Chim. Acta
1980, 63, 2328.
15. Suh, D.; Pole, D. L.; Warkentin, J.; Terlouw, J. K. Can.
J. Chem. 1996, 74, 544.
36. For reversibility of homolytic aromatic substitutions with
phenyl radicals, see: (a) Kobayashi, M.; Minato, H.;
Kobori, N. Bull. Chem. Soc. Jpn. 1969, 42, 2738; (b)
Henriquez, R.; Morgan, A. R.; Mulholland, P.; Non-
hebel, D. C.; Smith, G. G. J. Chem. Soc., Chem. Com-
mun. 1974, 987; (c) Henriquez, R.; Nonhebel, D. C.
Tetrahedron Lett. 1975, 3855; (d) Henriquez, R.; Non-
hebel, D. C. Tetrahedron Lett. 1975, 3857.
37. Suginome, H.; Ohtsuka, T.; Orito, K. J. Chem. Soc.,
Perkin Trans. 1 1984, 575.
38. (a) Handa, S.; Pattenden, G. J. Chem. Soc., Perkin Trans.
1 1999, 843; (b) Della, E. W.; Kostakis, C.; Smith, P. A.
Org. Lett. 1999, 1, 363.
16. Venneri, P. C.; Warkentin, J. J. Am. Chem. Soc. 1998,
120, 11182.
17. Merkley, N.; El-Saidi, M.; Warkentin, J. Can. J. Chem.
2000, 78, 356.
18. Merkley, N.; Warkentin, J. Can. J. Chem. 2000, 78, 942.
19. Merkley, N.; Venneri, P. C.; Warkentin, J. Can. J. Chem.
2001, 79, 312.
20. Altmann, J. A.; Csizmadia, I. G.; Yates, K.; Yates, P. J.
Chem. Phys. 1977, 66, 298.
21. Altmann, J. A.; Csizmadia, I. G.; Robb, M. A.; Yates,
K.; Yates, P. J. Am. Chem. Soc. 1978, 100, 1653.
22. Feller, D.; Borden, W. T.; Davidson, E. R. J. Comp.
Chem. 1980, 1, 158.
39. Baldwin, J. E.; Shukla, R. J. Phys. Chem. A 1999, 103,
7821.
23. Kakumoto, T.; Saito, K.; Imamura, A. J. Chem. Phys.
2000, 91, 2366.