Page 5 of 7
ACS Catalysis
(
4) (a) White, A. R.; Duggan, B. M.; Tsai, S.-C.; Vanderwal, C. D.
M.; Ogihara, S.; Sugiyama, K.; Shiomi, K.; Harigaya, Y.;
Nagamitsu, T.; Ōmura, S. Enantioselective total synthesis of
atpenin A5. J. Antibiot. 2009, 62, 289–294; (f) Bayen, S.; Obbard,
J. P.; Thomas, G. O. Chlorinated paraffins: a review of analysis
and environmental occurrence. Environ. Int. 2006, 32, 915–929.
1
2
3
4
5
6
7
8
9
The Alga Ochromonas danica Produces Bromosulfolipids. Org.
Lett. 2016, 18, 1124–1127; (b) Chung, W.-J.; Carlson, J. S.;
Vanderwal, C. D. General Approach to the Synthesis of the
Chlorosulfolipids Danicalipin A, Mytilipin A, and Malhamensili-
pin A in Enantioenriched Form. J. Org. Chem. 2014, 79, 2226–
(
9) (a) Isaacs, N. S.; Kirkpatrick, D. The chlorination of epoxides
by triphenylphosphine in carbon tetrachloride. Tetrahedron Lett.
972, 13, 3869–3870; (b) Yoshimitsu, T.; Fukumoto, N.; Tanaka, T.
2
241; (c) Chung, W.-J.; Vanderwal, C. D. Approaches to the
Chemical Synthesis of the Chlorosulfolipids. Acc. Chem. Res.
2014, 47, 718–728; (d) Chung, W.-J.; Carlson, J. S.; Bedke, D. K.;
Vanderwal, C. D. A Synthesis of the Chlorosulfolipid Mytilipin A
via a Longest Linear Sequence of Seven Steps. Angew. Chem. Int.
Ed. 2013, 52, 10052-10055; (e) Bedke, D. K.; Shibuya, G. M.; Perei-
ra, A. R.; Gerwick, W. H.; Vanderwal, C. D. A Concise Enantiose-
lective Synthesis of the Chlorosulfolipid Malhamensilipin A. J.
Am. Chem. Soc. 2010, 132, 2542–2543; (f) Kanady, J. S.; Nguyen, J.
D.; Ziller, J. W.; Vanderwal, C. D. Synthesis and Characterization
of All Four Diastereomers of 3,4-Dichloro-2-pentanol, Motifs
Relevant to the Chlorosulfolipids. J. Org. Chem. 2009, 74, 2175–
1
Enantiocontrolled Synthesis of Polychlorinated Hydrocarbon
Motifs: A Nucleophilic Multiple Chlorination Process Revisited.
J. Org. Chem, 2009, 74, 696–702; (c) Kamada, Y.; Kitamura, Y.;
Tanaka, T.; Yoshimitsu, T. Dichlorination of olefins with
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
3
NCS/Ph P. Org. Biomol. Chem. 2013, 11, 1598–1601; (d) Yo-
shimitsu, T.; Fukumoto, N.; Nakatani, R.; Kojima, N.; Tanaka, T.
Asymmetric Total Synthesis of (+)-Hexachlorosulfolipid, a Cyto-
toxin Isolated from Adriatic Mussels. J. Org. Chem. 2010, 75,
5
425–5437; (e) Yoshimitsu, T.; Nakatani, R.; Kobayashi, A.;
Tanaka, T. Asymmetric Total Synthesis of (+)-Danicalipin A.
Org. Lett. 2011, 13, 908–911; (f) Denton, R. M.; Tang, X.; Przeslak,
A. Catalysis of Phosphorus(V)-Mediated Transformations: Di-
chlorination Reactions of Epoxides Under Appel Conditions.
Org. Lett. 2010, 12, 4678–4681.
2
178; (g) Bedke, D. K.; Shibuya, G. M.; Pereira, A.; Gerwick, W.
H.; Haines, T. H.; Vanderwal, C. D. Relative Stereochemistry
Determination and Synthesis of the Major Chlorosulfolipid from
Ochromonas danica. J. Am. Chem. Soc. 2009, 131, 7570–7572; (h)
Shibuya, G. M.; Kanady, J. S.; Vanderwal, C. D. Stereoselective
Dichlorination of Allylic Alcohol Derivatives to Access Key Ste-
reochemical Arrays of the Chlorosulfolipids. J. Am. Chem. Soc.
(10) Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C.
Tetraethylammonium Trichloride: A Versatile Reagent for Chlo-
rinations and Oxidations. Angew. Chem. Int. Ed. Engl. 1997, 36,
2
008, 130, 12514–12518.
2342–2344.
(
5) (a) Nilewski, C.; Geisser, R. W.; Carreira, E. M. Total synthesis
(11) (a) Richardson, P. F.; Markó, I. E. On the Permanganate-
of a chlorosulpholipid cytotoxin associated with seafood poison-
ing. Nature 2009, 457, 573–576; (b) Boshkow, J.; Fischer, S.; Bai-
ley, A. M.; Wolfrum, S.; Carreira, E. M. Stereochemistry and
biological activity of chlorinated lipids: a study of danicalipin A
and selected diastereomers. Chem. Sci. 2017, 8, 6904-6910; (c)
Bailey, A. M.; Wolfrum, S.; Carreira, E. M. Biological Investiga-
tions of (+)‐Danicalipin A Enabled Through Synthesis. Angew.
Chem. Int. Ed. 2016, 55, 639–643; (d) Nilewski, C.; Le Chapelain,
C.; Wolfrum, S.; Carreira, E. M. Synthesis and Biological Evalua-
tion of Chlorinated Analogs of Leukotoxin Diol. Org. Lett. 2015,
Mediated Dichlorination of Olefins. Synlett 1991, 733–736; (b)
Bellesia, F.; Ghelfi, F.; Pagnoni, U. M.; Pinetti, A. Chlorination of
Alkenes with MnO -MnCl -Acetyl Chloride in Dimethyl Forma-
2 2
mide. Synth. Commun. 1991, 21, 489–494; (c) Markó, I. E.; Rich-
ardson, P. R.; Bailey, M.; Maquire, A. R.; Coughlan, N. Selective
manganese-mediated transformations using the combination:
4 3
KMnO Me SiCl. Tetrahedron Lett. 1997, 38, 2339–2342; (d) Boyes,
A. L.; Wild, M. The manganese-mediated regioselective chlorina-
tion of allenes in synthetic approaches towards the spongistatins
and halomon natural products. Tetrahedron Lett. 1998, 39, 6725–
1
7, 5602–5605; (e) Nilewski, C.; Carreira, E. M. Recent Advances
6728; (e) Fu, N.; Sauer, G. S.; Lin, S. Electrocatalytic Radical
in the Total Synthesis of Chlorosulfolipids. Eur. J. Org. Chem.
2012, 1685-1698; (f) P. Sondermann, E. M. Carreira, J. Am. Chem.
Soc. 2019, doi.org/10.1021/jacs.9b05013
Dichlorination of Alkenes with Nucleophilic Chlorine Sources. J.
Am. Chem. Soc. 2017, 139, 15548–15553. (f) For an application of
BnEt NCl/KMnO /TMSCl see: Umezawa, T.; Shibata, M.;
3 4
Kaneko, K.; Okino, T.; Matsuda, F. Asymmetric Total Synthesis
of Danicalipin A and Evaluation of Biological Activity. Org. Lett.
2011, 13, 904–907.
(6) Yoshimitsu, T.; Fukumoto, N.; Nakatani, R.; Kojima, N.;
Tanaka, T. Asymmetric Total Synthesis of (+)-Hexachloro-
sulfolipid, a Cytotoxin Isolated from Adriatic Mussels. J. Org.
Chem. 2010, 75, 5425–5437.
(
12) San Filippo Jr., J.; Sowinski, A. F.; Romano, L. J. Chlorination
(
7) (a) Tartakoff, S. S.; Vanderwal, C. D. A Synthesis of the ABC
of alkenes and alkynes with molybdenum(V) chloride. J. Am.
Chem. Soc. 1975, 97, 1599–1600.
Tricyclic Core of the Clionastatins Serves To Corroborate Their
Proposed Structures. Org. Lett. 2014, 16, 1458–1461; (b) Nilewski,
C.; Geisser, R. W.; Ebert, M.-O.; Carreira, E. M. Conformational
and Configurational Analysis in the Study and Synthesis of Chlo-
rinated Natural Products. J. Am. Chem. Soc. 2009, 131, 15866-
15876.
(13) Sakai, K.; Sugimoto, K.; Shigeizumi, S.; Kondo, K. A new
selective dichlorination of C-C double bonds. Tetrahedron Lett.
1994, 35, 737–740.
(14) Moriuchi, T.; Fukui, Y.; Kato, S.; Kajikawa, T.; Hirao, T.
Vanadium-catalyzed chlorination under molecular oxygen. J.
Inorg. Biochem. 2015, 147, 177–180.
(8) (a) Moosmann, P.; Ueoka, R.; Gigger, M.; Piel, J. Aranazoles:
Extensively Chlorinated Nonribosomal Peptide–Polyketide Hy-
brids from the Cyanobacterium Fischerella sp. PCC 9339. Org.
Lett. 2018, 20, 5238–5241; (b) Boshkow, J.; Fischer, S.; Bailey, A.
M.; Wolfrum, S.; Carreira, E. M. Stereochemistry and biological
activity of chlorinated lipids: a study of danicalipin A and select-
ed diastereomers. Chem. Sci. 2017, 8, 6904-6910; (c) Krautwald,
S.; Nilewski, C.; Mori, M.; Shiomi, K.; Ōmura, S.; Carreira, E. M.
(15) (a) Roberts, I.; Kimball, G. E. The Halogenation of Ethylenes.
J. Am. Chem. Soc. 1937, 59, 947-948; (b) Shemet, A.; Sarlah, D.;
Carreira, E. M. Stereochemical Studies of the Opening of Chloro
Vinyl Epoxides: Cyclic Chloronium Ions as Intermediates. Org.
Lett. 2015, 17, 1878-1881.
(
16) Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E. Catalytic, stere-
3
Bioisosteric Exchange of Csp ‐Chloro and Methyl Substituents:
ospecific syn-dichlorination of alkenes. Nat. Chem. 2015, 7, 146–
Synthesis and Initial Biological Studies of Atpenin A5 Analogues.
Angew. Chem. Int. Ed. 2016, 55, 4049–4053; (d) Bedke, D. K.;
Vanderwal, C. D. Chlorosulfolipids: Structure, synthesis, and
biological relevance. Nat. Prod. Rep. 2011, 28, 15–25; (e) Ohtawa,
152.
(17) Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch, P. M.;
Chen, J. S. Enantioselective Dichlorination of Allylic Alcohols. J.
Am. Chem. Soc. 2011, 133, 8134–8137.
ACS Paragon Plus Environment