C O M M U N I C A T I O N S
trosymmetric space groups. This is particularly evident in comparing
the amino siloles (11 and 13) with the dimethylamino counterparts
(14 and 15) in which a hydrogen bond donor is absent. Further
exploitation of hydrogen bonding directed crystal packing with other
DA systems is currently underway in our laboratory.
In summary, we have developed a new and efficient method for
the synthesis of novel donor-acceptor silole chromophores by direct
cross-coupling reactions. The ability to manipulate the electronic
and physical properties of siloles through judicious combinations
of peripheral functional groups was also demonstrated. The entire
synthetic sequence from silane 1 to DA systems is achieved
efficiently in two steps with only a single purification process. Silole
alkene cross-couplings and utilization of 5 to prepare second-
generation siloles will be described elsewhere.
Figure 1. Electronic absorption spectra of donor-acceptor siloles in
CH2Cl2.
Acknowledgment. We thank the Robert A. Welch Foundation
and donors of the American Chemical Society Petroleum Research
Fund for partial financial support of this research. We thank Dr.
Vincent Lynch for determination of crystal structures and Professors
Allen Bard, David Vanden Bout, and Grant Willson for helpful
discussions. Y.Y. thanks Pfizer for an undergraduate research
fellowship.
Supporting Information Available: Detailed experimental pro-
cedures (PDF) and characterization of all new compounds (CIF). This
material is available free of charge via the Internet at http://pubs.acs.org.
Figure 2. Photoluminescence spectra of donor-acceptor siloles in CH2Cl2.
References
(
1) For selected examples, see: (a) Chen, J.; Law, C. C. W.; Lam, J. W. Y.;
Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Chem.
Mater. 2003, 15, 1535-1546. (b) Kim, B.-H.; Woo, H.-G. Organome-
tallics 2002, 21, 2796-2798. (c) Uchida, M.; Izumizawa, T.; Nakano,
T.; Yamaguchi, S.; Tamao, K.; Furukawa, K. Chem. Mater. 2001, 13,
2680-2683. (d) Yamaguchi, S.; Endo, T.; Uchida, M.; Izumizawa, T.;
Furukawa, K.; Tamao, K. Chem. Lett. 2001, 30, 98-99. (e) Tamao, K.;
Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. J. Am. Chem.
Soc. 1996, 118, 11974-11975. (f) Yamaguchi, S.; Endo, T.; Uchida, M.;
Izumizawa, T.; Furukawa, K.; Tamao, K. Chem.-Eur. J. 2000, 6, 1683-
1692.
(2) (a) Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C. J. Am. Chem. Soc.
2
003, 125, 3821-3830. (b) Sohn, H.; Calhoun, R. M.; Sailor, M. J.;
Figure 3. X-ray structure of silole 13. Hydrogen bonds are shown in red.
Trogler, W. C. Angew. Chem., Int. Ed. 2001, 40, 2104-2105.
3) Matsuzaki, Y.; Nakano, M.; Yamaguchi, K.; Tanaka, K.; Yamabe, T.
Chem. Phys. Lett. 1996, 263, 119-125.
(
tuned by the manipulation of peripheral DA functional groups. This
advance brings siloles into the family of electronically tunable DA
chromophores.
The consequences of varying the nature of the DA groups are
also manifested in the photoluminescence spectra (Figure 2).
(
4) Gandhi, G.; Bakhshi, A. K. Solid State Commun. 2003, 128, 467-472.
5) Nonlinear Optical Effects and Materials; G u¨ nter, P., Ed.; Springer:
Heidelberg, Germany, 2000.
(
(
6) (a) Nielsen, M. B.; Utesch, N. F.; Moonen, N. N. P.; Boudon, C.;
Gisselbrecht, J.-P.; Concilio, S.; Piotto, S. P.; Seiler, P.; Gunter, P.; Gross,
M.; Diederich, F. Chem.-Eur. J. 2002, 8, 3601-3613. (b) Blanchette,
H. S.; Brand, S. C.; Naruse, H.; Weakley, T. J. R.; Haley, M. M.
Tetrahedron 2000, 56, 9581-9588. (c) Cuilei, S. C.; Tykwinski, R. R.
Org. Lett. 2000, 2, 3607-3610. (d) Wan, W. B.; Brand, S. C.; Pak, J. J.;
Haley, M. M. Chem.-Eur. J. 2000, 6, 2044-2052. (e) De Nicola, A.;
Ringenbach, C.; Ziessel, R. Tetrahedron Lett. 2003, 44, 183-187. (f) Tour,
J. M. Chem. ReV. 1996, 96, 537-553. (g) Moore, J. S. Acc. Chem. Res.
1997, 30, 402-413.
Interestingly, silole 10 (D ) OCH
3 2
, A ) NO ) exhibits only the
fifth longest wavelength absorption in this series, but displays the
longest wavelength emission at 649 nm.16 This is the longest
wavelength emission for a compound possessing only a single silole
1
f
in the chromophore. The moderate silole quantum efficiencies
(
7) Yamaguchi, S.; Iimura, K.; Tamao, K. Chem. Lett. 1998, 27, 89-90.
(
Table 1) are consistent with previous observations.1f
(8) Tamao, K.; Yamaguchi, S.; Shiro, M. J. Am. Chem. Soc. 1994, 116,
11715-11722.
Siloles 7, 8, 10, 11, and 13-15 gave crystals suitable for X-ray
(9) Halogenation from the dizinc was more efficient and consistent than that
analysis (Table 1). Curiously, only 11 and 13 packed in a
, Figure 3).17 Within these
noncentrosymmetric space group (Pna2
from the dilithio species; see ref 8.
(10) Compounds exactly analogous to 6 have been prepared from 2,5-
1
dibromosiloles; see refs 7 and 8.
crystals, two sheets of siloles intersect at 45°, and the orientation
of the dimethylsilylene moiety is unidirectional throughout. The
DA groups within a sheet reinforce the induced dipole by aligning
in a head-to-tail fashion, and the intersecting sheet is oriented in
an electrostatically complementary direction. In contrast, the
remaining compounds packed in centrosymmetric space groups in
which the dimethylsilylene moiety and the DA groups pack in a
head-to-head orientation that minimizes dipoles.
(
11) (a) Chen, W.; Ijadi-Maghsoodi, S.; Barton, T. Polym. Prepr. (Am. Chem.
Soc., DiV. Polym. Chem.) 1997, 38, 189-190. (b) For a mini review, see:
Yamaguchi, S.; Tamao, K. J. Organomet. Chem. 2002, 653, 223-228.
12) Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138-2152.
(
(13) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
4467-4470.
(
14) Ohshita, J.; Mimura, N.; Arase, H.; Nodono, M.; Kunai, A.; Komaguchi,
K.; Shiotani, M.; Ishikawa, M. Macromolecules 1998, 31, 7985-7987.
15) For a modified procedure that does not require anhydrous conditions,
see: Anastasia, L.; Negishi, E. Org. Lett. 2001, 3, 3111-3113.
(
(16) The emission λmax and quantum yield remained consistent over a broad
concentration range (0.1-45 µM).
We speculate that hydrogen bonding facilitates noncentrosym-
metric packing in 11 and 13. The average hydrogen bond distances
and bond angles in 11 and 13 are 2.122 Å, 170° and 2.107 Å, 148°,
respectively. In contrast, dipole-directed packing will favor cen-
(
17) It is encouraging that both aminosiloles display noncentrosymmetric
packing, which is a requirement for second-harmonic generation in the
solid state; see ref 5.
JA049758Z
J. AM. CHEM. SOC.
9
VOL. 126, NO. 12, 2004 3725