compound library of unsymmetrical bisindoles. As a part of
this project, we developed a solvent-free, efficient, and easy
to handle diversification strategy for annulated HMD-type
bisindoles via a C-C bond-formation reaction on activated
silica under mild reaction conditions starting from aziridines
or hydroxyl compounds.
it should be possible to perform these reactions highly regio-
19
and stereoselectively. For aziridination of olefins, a number
of different metal-catalyzed nitrene transfer methods with
copper, rhodium, ruthenium, iron, cobalt, manganese, silver,
20
and gold catalysts were described. With respect to synthetic
application, we decided to perform the bromine-catalyzed
aziridination developed by Sharpless and co-workers be-
cause this protocol does not require an excess of olefin
In the past, different synthetic strategies have been
developed for the synthesis of the pyrrolo[2,3-c]azepine motif
of HMD. The first total synthesis of HMD (2) was published
2
1
(Scheme 2).
8
by Annoura; later, Horne introduced another synthetic
9
strategy. Recently, a new total synthesis was introduced by
10
Papeo. Annulated HMD derivatives usually were prepared
via the azepino[3,4-b]indole-1,5-dione (5) intermediate or
the corresponding alcohol (()-6 and subsequent attachment
Scheme 2. Bromine-Catalyzed Aziridination of 7
5
of the imidazole heterocycle. Azepino-indole 5 is usually
synthesized via intramolecular cyclization reactions with
11
2 5
MsOH/P O . Also, protocols employing ring-closing meta-
1
2
13
thesis and polyphosphoric acid were introduced so far.
It has been shown that the kinase inhibiting activities of
annulated HMDs 3 vary very much when other heterocycles
5
instead of imidazole are introduced. Hence, we aimed to
develop a general and easy manageable preparation of
unsymmetrical HMD-type bisindoles. On the basis of our
experience on oxidation methods,14 we planned to use
different oxidation reactions as a toolbox for diversity-
15
To our delight, the aziridination of 7 proceeded smoothly
to give (()-8 in good yield (78%). In contrast to the reported
literature conditions, the reaction is favorably carried out
oriented synthesis. Until now, relatively little use has been
made applying oxidation methodologies for this purpose. The
starting material 7 was synthesized in a one-pot elimination-
5
protection procedure from (()-6 (Scheme 1). Boc-protecting
(7) (a) Kumar, K.; Michalik, D.; Castro, I. G.; Tillack, A.; Zapf, A.;
Arlt, M.; Heinrich, T.; B o¨ ttcher, H.; Beller, M. Chem.-Eur. J. 2004, 10,
7
46-757. (b) Michalik, D.; Kumar, K.; Zapf, A.; Tillack, A.; Arlt, M.;
Heinrich, T.; Beller, M. Tetrahedron Lett. 2004, 45, 2057-2061. (c) Tewari,
Scheme 1. Synthesis of Intermediates (()-6 and 7
A.; Hein, M.; Zapf, A.; Beller, M. Tetrahedron Lett. 2004, 45, 7703-7707.
(d) Khedkar, V.; Tillack, A.; Michalik, M.; Beller, M. Tetrahedron 2005,
6
1, 7622-7631. (e) Neumann, H.; Str u¨ bing, D.; Lalk, M.; Klaus, S.; H u¨ bner,
S.; Spannenberg, A.; Lindequist, U.; Beller, M. Org. Biomol. Chem. 2006,
4
, 1365-1375.
(
8) Annoura, H.; Tatsuoka, T. Tetrahedron Lett. 1995, 36, 413-416.
(9) (a) Xu, Y.-Z.; Yakushijin, K.; Horne, D. A. J. Org. Chem. 1997, 62,
4
56-464. (b) Sosa, A. C. B.; Yakushijin, K.; Horne, D. A. J. Org. Chem.
2000, 65, 610-611.
(10) Papeo, G.; Posteri, H.; Borghi, D.; Varasi, M. Org. Lett. 2005, 7,
5
641-5644.
(
11) Cho, H.; Matsuki, S. Heterocycles 1996, 43, 127-131.
(12) Chacun-Lef e` vre, L.; B e´ n e´ teau, V.; Joseph, B.; M e´ rour, J.-Y.
Tetrahedron 2002, 58, 10181-10188.
13) Suzuki, H.; Shinpo, K.; Yamazaki, T.; Niwa, S.; Yokoyama, Y.;
Murakami, Y. Heterocycles 1996, 42, 83-86.
14) For recent publications in this area, see: (a) Tse, M. K.; D o¨ bler,
(
(
C.; Bhor, S.; Klawonn, M.; M a¨ gerlein, W.; Hugl, H.; Beller, M. Angew.
Chem., Int. Ed. 2004, 43, 5255-5260. (b) Tse, M. K.; Bhor, S.; Klawonn,
M.; Anilkumar, G.; Jiao, H.; D o¨ bler, C.; Spannenberg, A.; M a¨ gerlein, W.;
Hugl, H.; Beller, M. Chem.-Eur. J. 2006, 12, 1855-1874. (c) Tse, M. K.;
Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Spannenberg, A.; D o¨ bler,
C.; M a¨ gerlein, W.; Hugl, H.; Beller, M. Chem.-Eur. J. 2006, 12, 1875-
1
888. (d) Tse, M. K.; Klawonn, M.; Bhor, S.; D o¨ bler, C.; Anilkumar, G.;
Hugl, H.; M a¨ gerlein, W.; Beller, M. Org. Lett. 2005, 7, 987-990.
15) (a) Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004,
(
groups were introduced to obtain a more stable and storable
alkene, which smoothly reacts in the subsequent aziridination
reaction.
4
3, 46-58. (b) Schreiber, S. L. Science 2000, 287, 1964-1969. (c) Nicolaou,
K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G.-Q.; Barluenga, S.; Mitchell,
H. J. J. Am. Chem. Soc. 2000, 122, 9939-9953.
(16) (a) Herrmann, W. A.; Fischer, R. W.; Marz, D. W. Angew. Chem.,
Although initial exploratory experiments employing stan-
Int. Ed. 1991, 30, 1638-1641. (b) Rudolph, J.; Reddey, K. L.; Chiang, J.
P.; Sharpless, K. B. J. Am. Chem. Soc. 1997, 119, 6189-6190.
1
6
dard epoxidation methods such as m-CPBA or MTO were
(17) For a review, see: Tanner, D. Angew. Chem., Int. Ed. 1994, 33,
not successful, we turned our interest to the aziridination of
5
99-619.
18) For reviews, see: (a) Hu, X. E. Tetrahedron 2004, 60, 2701-2743.
b) Stamm, H. J. Prakt. Chem. 1999, 341, 319-331.
19) For a review, see: Sweeney, J. B. Chem. Soc. ReV. 2002, 31, 247-
258.
17
(
olefin 7. It is well documented that N-arylsulfonylaziridines
(
1
8
react with C, O, S, N, halogen, or hydrogen nucleophiles
in the presence of a base, an acid, or a Lewis acid. In general,
(
5762
Org. Lett., Vol. 8, No. 25, 2006