H O for 1 min each and dried with N after each sonication. The
2
15 J.-F. Nierengarten, New J. Chem., 2004, 28, 1177–1191; D. Bonifazi,
O. Enger and F. Diederich, Chem. Soc. Rev., 2007, 36, 390–414.
2
hydrophobic Si/SiO2 substrates were lowered into and raised
1
6 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and
R. E. Smalley, Nature, 1985, 318, 162–163.
ꢀ1
from the Langmuir film (P ¼ 30 nN m ) at a velocity of
mm min to afford the 2 or 3 bilayer LB films. Finally the
LBFs were dried with N
ꢀ1
5
17 A. W. Jensen, S. R. Wilson and D. I. Schuster, Bioorg. Med. Chem.,
1996, 4, 767–779; S. Bosi, T. D. Ros, G. Spattuto and M. Prato, Eur.
J. Med. Chem., 2003, 38, 913–923; B. Belgorodsky, L. Fadeev,
V. Ittah, H. Benyamini, S. Zeiner, D. Huppert, A. B. Kotlyar and
M. Gozin, Bioconjugate Chem., 2005, 16, 1058–1062.
2
.
4
.7 Photopatterning
1
8 M. Prato, J. Mater. Chem., 1997, 7, 1097–1109; R. M. Metzger,
J. W. Baldwin, W. J. Shumate, I. R. Peterson, P. Mani,
G. J. Mankey, T. Morris, G. Szulczewski, S. Bosi, M. Prato,
A. Comito and Y. Rubin, J. Phys. Chem. B, 2003, 107, 1021–1027;
M. E. Rinc o´ n, H. Hu, J. Campos and J. Ruiz-Garcia, J. Phys.
Chem. B, 2003, 107, 4111–4117; F. Deng, Y. Yang, S. Hwang,
Y.-S. Shon and S. Chen, Anal. Chem., 2004, 76, 6102–6107;
D. R. Talham, Chem. Rev., 2004, 104, 5479–5501; N. Martin,
Chem. Commun., 2006, 2093–2104.
9 F. Fungo, L. Otero, C. D. Borsarelli, E. N. Durantini, J. J. Silber and
L. Sereno, J. Phys. Chem. B, 2002, 106, 4070–4078; H. Imahori and
S. Fukuzumi, Adv. Funct. Mater., 2004, 14, 525–536;
T. M. Figueira-Duarte, A. G e´ gout and J.-F. Nierengarten,
Chem. Commun., 2007, 109–119.
Photopatterning was conducted using light from a frequency
doubled argon ion laser (Coherent FreD 300C, Coherent U.K.,
Ely), which emits at 244 nm. For micrometre-scale patterning,
2
a square grid mask consisting of 40 ꢂ 40 mm square openings
separated by 20 mm beams was positioned on the C adduct
0
6
LBF and the sample was irradiated with power of 100 mW.
The irradiation time was 1 min, and the area of illumination
2
was typically 0.2–0.4 cm . The surface was then rinsed
1
3 2
thoroughly with CHCl and dried with N . For the scanning
near-field photolithography, the laser was coupled to a Thermo-
Microscopes Aurora III near-field scanning optical microscope
fitted with a fused silica fiber probe (Veeco). The aperture
diameter of the SNOM tip was ~70 nm. 16 lines were written
for each probe velocity. The irradiated samples were rinsed
thoroughly with CHCl and dried with N .
2
0 A. M. Rao, P. Zhou, K.-A. Wang, G. T. Hager, J. M. Holden,
Y. Wang, W.-T. Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett,
M. A. Duncan and I. J. Amster, Science, 1993, 259, 955–957.
1 P. Zhou, Z.-H. Dong, A. M. Rao and P. C. Eklund, Chem. Phys.
Lett., 1993, 211, 337–340.
2
2
2
3
2
2 M. Menon, K. R. Subbaswamy and M. Sawtarie, Phys. Rev. B, 1994,
4
9, 13966–13969.
3 P. W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. J a´ nossy,
S. Pekker, G. Oszlanyl and L. Forr o´ , Nature, 1994, 370, 636–639;
Y. Wang, J. M. Holden, A. M. Rao, P. C. Eklund,
U. D. Venkateswaran, D. Eastwood and R. L. Lidberg, Phys. Rev.
B, 1995, 51, 4547–4556.
5
Acknowledgements
JAP, DA and DT would like to thank the European Community
FP6, Contract No. NMP4-CT-2005-014006 NANO3D) and
(
JAP would like to thank the Engineering and Physical Sciences
Research Council (EPSRC, Adventurous Chemistry Scheme
EP/C5238571) for financial support. GJL thanks RCUK (Grant
EP/C523857/1), the RSC Analytical Chemistry Trust Fund and
the EPSRC for their support.
24 T. L. Makarova, Semiconductors, 2001, 35, 243–278.
5 A. Hassanien, J. Gasperi ꢀc , J. Demsar, I. Mu sˇ evic and D. Mihailovic,
2
´
Appl. Phys. Lett., 1997, 70, 417–419; E. Kov a´ ts, G. Oszl a´ nyl and
S. Pekker, J. Phys. Chem. B, 2005, 109, 11913–11917.
ꢁ
ꢁ
2
6 S. Osawa, M. Sakai and E. Osawa, J. Phys. Chem. A, 1997, 101, 1378–
1383; D. Porezag, M. R. Pederson, T. Frauenheim and T. K o¨ hler,
Phys. Rev. B, 1995, 52, 14963–14970; G. E. Scuseria, Chem. Phys.
Lett., 1996, 257, 583–586; M. Suzuki, T. Iida and K. Nasu,
Phys. Rev. B, 2000, 61, 2188–2198.
6
References
2
7 S. G. Stepanian, V. A. Karachevtsev, A. M. Plokhotnichenko,
L. Adamowicz and A. M. Rao, J. Phys. Chem. B, 2006, 110,
1
A. K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel,
A. Romano, M. Sato and W. Hinsberg, J. Vac. Sci. Technol., 2004,
B22, 3459–3464.
M. Switkes and M. Rothschild, J. Vac. Sci. Technol., 2001, B19,
2353–2356.
J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez and F. A. Houle,
J. Vac. Sci. Technol., 1999, B17, 3306–3309.
D. B. Shao and S. C. Chen, Nano Lett., 2006, 6, 2279–2283.
W. L. Barnes, A. Dereux and T. W. Ebbesen, Nature, 2003, 424, 824–
1
5769–15775.
2
2
3
8 A. P. G. Robinson, P. E. Palmer, T. Tada, T. Kanayama and
J. A. Preece, Appl. Phys. Lett., 1998, 72, 1302–1304.
2
3
9 T. Tada, T. Kanayama, A. P. G. Robinson, R. E. Palmer and
J. A. Preece, J. Photopolym. Sci. Technol., 1998, 11, 581–584.
0 A. P. G. Robinson, P. E. Palmer, T. Tada, T. Kanayama,
J. A. Preece, D. Philip, U. Jonas and F. Diederich, Chem. Phys.
Lett., 1998, 289, 586–580.
4
5
830.
3
3
3
1 A. P. G. Robinson, R. E. Palmer, T. Tada, T. Kanayama,
E. J. Shelley and J. A. Preece, Mater. Res. Symp. Proc., 1999, 546,
6
7
W. Srituravanich, N. Fang, C. Sun, Q. Luo and X. Zhang,
Nano Lett., 2004, 4, 1085–1088.
A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm,
G. S. Kino and W. E. Moerner, Nano Lett., 2006, 6, 355–360;
L. Wang, M. Yppuluri, E. X. Jin and X. Xu, Nano Lett., 2006, 6,
2
19–224.
2 A. P. G. Robinson, R. E. Palmer, T. Tada, T. Kanayama,
E. J. Shelley and J. A. Preece, Chem. Phys. Lett., 1999, 312,
4
69–474.
3
61–364.
S. Sun, K. S. L. Chong and G. J. Leggett, J. Am. Chem. Soc., 2002,
24, 2414–1415.
S. Sun and G. J. Leggett, Nano Lett., 2002, 2, 1223–1227.
3 J.-F. Nierengarten, V. Gramlich, F. Cardullo and F. Diederich,
Angew. Chem., Int. Ed. Engl., 1996, 35, 2101–2103;
J.-F. Nierengarten, A. Herrman, R. R. Tykwinski, M. R u} ttimann
and F. Diederich, Helv. Chim. Acta, 1997, 80, 293–316;
E. J. Shelley, PhD thesis, University of Birmingham, 2002,
p. 108.
4 E. Vuorimaa, T. Vuorinen, N. Tkachenko, O. Cramariuc, T. Hukka,
S. Nummelin, A. Shivanyuk, K. Rissanen and H. Lemmetyinen,
Langmuir, 2001, 17, 7327–7331.
8
9
1
1
1
0 S. Sun and G. J. Leggett, Nano Lett., 2004, 4, 1381–1384.
1 S. Sun, K. S. L. Chong and G. J. Leggett, Nanotechnology, 2005, 16,
798–1808.
2 R. E. Ducker and G. J. Leggett, J. Am. Chem. Soc., 2006, 128,
92–393.
3 S. Sun, M. Montague, K. Critchley, M.-S. Chen, W. J. Dressick,
S. D. Evans and G. J. Leggett, Nano Lett., 2006, 6, 29–33.
4 S. Sun, P. Mendes, K. Critchley, S. Diegoli, M. Hanwell, S. D. Evans,
G. J. Leggett, J. A. Preece and T. H. Richardson, Nano Lett., 2006, 6,
1
3
1
1
1
3
3
3
5 J.-L. Gallani, D. Felder, D. Guillon, B. Heinrich and
J.-F. Nierengarten, Langmuir, 2002, 18, 2908–2913.
6 Y. Gao, Z. Tang, E. Watkins, J. Majewski and H.-L. Wang,
Langmuir, 2005, 21, 1416–1423.
345–350.
This journal is ª The Royal Society of Chemistry 2008
J. Mater. Chem., 2008, 18, 2016–2021 | 2021