A Schiff Base Trinuclear Nickel Cluster
clusters (Table S1), and atomic coordinates (ϫ 104) and equivalent
isotropic displacement parameters (A ϫ 10 ) for 1 (Table S2).
Table 1. Crystal data and structure refinement for 1.
2
3
˚
Formula
C42H43Ni3O9N6Cl
987.34
monoclinic
P21/n (No. 14)
17.1676(16)
12.2894(12)
20.855(2)
Formula weight/g molϪ1
Crystal system
Space group
Acknowledgement
˚
a/A
˚
b/A
This project was supported by Guangxi Key Laboratory for Advance
Materials and New Preparation Technology (No: 0842003-25) and
the Young Science Foundation of Guangxi Province of China (No:
0832085).
˚
c/A
β/°
103.1380(10)
4284.8(7)
3
˚
V/A
Z
4
ρcalcd/g cmϪ3
1.531
1.429
µ/mmϪ1
F(000)
Crystal size/mm
θ range/°
No. of measured reflns
No. of unique reflns
No. of observed [I > 2σ(I)) reflns
Goodness-of-fit on F2
Final R indices [I > 2σ(I)]
R indices (all data)
Factors of weighting scheme*
2040
References
0.318 ϫ 0.282 ϫ 0.262
2.41 Յ θ Յ 25.10
31119
7615
6294
[1] From the Molecular to the Nanoscale: Synthesis, Structure, and
Properties, Vol. 7 (Eds.: M. Fujita, A. Powell, C. Creutz),
Elsevier-Ltd., Oxford, 2004.
[2] D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 2003, 42, 268.
[3] D. Yoshihara, S. Karasawa, N. Koga, J. Am. Chem. Soc. 2008,
130, 10460.
[4] C. C. Beedle, C. J. Stephenson, K. J. Heroux, W. Wernsdorfer,
D. N. Hendrickson, Inorg. Chem. 2008, 47, 10798.
[5] K. W. Galloway, A. M. Whyte, W. Wernsdorfer, J. Sanchez-
Benitez, K. V. Kamenev, A. Parkin, R. D. Peacock, M. Murrie,
Inorg. Chem. 2008, 47, 7438.
[6] C. J. Milios, A. Prescimone, A. Mishra, S. Parsons, W.
Wernsdorfer, G. Christou, S. P. Perlepes, E. K. Brechin, Chem.
Commun. 2007, 153.
1.066
R1 ϭ 0.0274, wR2 ϭ 0.0700
R1 ϭ 0.0375, wR2 ϭ 0.0753
0.0397, 1.0351
0.412, Ϫ0.310
Ϫ3
˚
Residual electron density/e A
* Standard SHELXL weighting scheme w ϭ 1/[σ2(F2o) ϩ (aP)2 ϩ
bP] where P ϭ (F2o ϩ 2F2c)/3
˚
Table 2. Selected bond lengths/A and angles/° for 1.
[7] T. C. Stamatatos, D. Foguet-Albiol, S.-C. Lee, C. C. Stoumpos,
C. P. Raptopoulou, A. Terzis, W. Wernsdorfer, S. O. Hill, S. P.
Perlepes, G. Christou, J. Am. Chem. Soc. 2007, 129, 9484.
[8] C. J. Milios, R. Inglis, A. Vinslava, R. Bagai, W. Wernsdorfer,
S. Parsons, S. P. Perlepes, G. Christou, E. K. Brechin, J. Am.
Chem. Soc. 2007, 129, 12505.
[9] D. Z. Gao, Y. Q. Sun, D. Z. Liao, Z. H. Jiang, S. P. Yan, Z.
Anorg. Allg. Chem. 2008, 634, 1950.
[10] R. H. Laye, E. J. L. McInnes, Eur. J. Inorg. Chem. 2004, 2811.
[11] C. J. Millos, A. G. Whittaker, E. K. Brechin, Polyhedron 2007,
26, 1927 and references therein.
Ni1ϪN4
Ni1ϪN6
Ni1ϪO3
Ni2ϪN3
Ni2ϪO1
Ni2ϪO4
Ni3ϪN2
Ni3ϪO2
Ni3ϪO4
2.021(2)
2.032(2)
Ni1ϪO4
Ni1ϪO1
Ni1ϪO5
Ni2ϪN1
Ni2ϪO3
Ni2ϪO2
Ni3ϪN5
Ni3ϪO5
Ni3ϪO1
2.0235(15)
2.1123(14)
2.1358(215)
2.016(2)
2.0502(15)
2.2690(15)
2.0124(19)
2.0388(15)
2.1780(14)
2.1288(15)
2.010(2)
2.0354(14)
2.1224(15)
1.9862(19)
2.0332(15)
2.1179(15)
O4ϪNi1ϪN6
O4ϪNi1ϪO1
N4ϪNi1ϪO4
N4ϪNi1ϪO3
N6ϪNi1ϪO3
N4ϪNi1ϪO5
N6ϪNi1ϪO5
O3ϪNi1ϪO5
N3ϪNi2ϪO1
N3ϪNi2ϪO3
O1ϪNi2ϪO3
N1ϪNi2ϪO4
O3ϪNi2ϪO4
N1ϪNi2ϪO2
O3ϪNi2ϪO2
N2ϪNi3ϪO2
N5ϪNi3ϪO2
N5ϪNi3ϪO5
N2ϪNi3ϪO4
O2ϪNi3ϪO4
N2ϪNi3ϪO1
O2ϪNi3ϪO1
O4ϪNi3ϪO1
169.05(7)
75.86(6)
92.03(7)
101.27(7)
98.11(7)
97.61(7)
98.03(7)
152.85(6)
167.29(7)
93.28(7)
80.39(6)
167.40(7)
79.28(6)
99.84(7)
150.60(6)
94.45(7)
104.24(7)
92.86(7)
171.38(7)
82.59(6)
98.94(7)
79.05(6)
72.58(5)
N4ϪNi1ϪO1
N6ϪNi1ϪO1
N4ϪNi1ϪN6
O4ϪNi1ϪO3
O1ϪNi1ϪO3
O4ϪNi1ϪO5
O1ϪNi1ϪO5
N3ϪNi2ϪN1
N1ϪNi2ϪO1
N1ϪNi2ϪO3
N3ϪNi2ϪO4
O1ϪNi2ϪO4
N3ϪNi2ϪO2
O1ϪNi2ϪO2
O4ϪNi2ϪO2
N2ϪNi3ϪN5
N2ϪNi3ϪO5
O2ϪNi3ϪO5
N5ϪNi3ϪO4
O5ϪNi3ϪO4
N5ϪNi3ϪO1
O5ϪNi3ϪO1
167.89(7)
93.19(7)
98.92(8)
79.72(6)
76.88(6)
80.28(6)
80.56(5)
99.92(8)
92.02(7)
99.35(7)
92.67(7)
75.39(6)
105.07(7)
76.88(6)
77.13(6)
92.35(8)
100.15(7)
157.02(6)
96.22(7)
80.37(6)
168.00(7)
81.22(6)
[12] J. Milios, A. Prescimone, J. Sanchez-Benitez, S. Parsons, M.
Murrie, E. K. Brechin, Inorg. Chem. 2006, 45, 7053.
[13] C. J. Milios, A. Vinslava, A. G. Whittaker, S. Parsons, W.
Wernsdorfer, G. Christou, S. P. Perlepes, E. K. Brechin, Inorg.
Chem. 2006, 45, 5272.
[14] I. A. Gass, C. J. Milios, A. G. Whittaker, F. P. A. Fabiani, S.
Parsons, M. Murrie, S. P. Perlepes, E. K. Brechin, Inorg. Chem.
2006, 45, 5281.
[15] C. P. Raptopoulou, A. K. Boudalis, Y. Sanakis, V. Psycharis, J.
M. Clemente-Juan, M. Fardis, G. Diamantopoulos, G.
Papavassiliou, Inorg. Chem. 2006, 45, 2317.
[16] S. H. Zhang, Y. Song, H. Liang, M. H. Zeng, Cryst. Eng. Com-
mun. 2009, 11, 865Ϫ872.
[17] W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, G.
Christou, Nature 2002, 416, 406.
[18] X. Y. Li, L. Y. Huang, H. J. Sun, M. Li, Z. Anorg. Allg. Chem.
2005, 631, 3096.
[19] H. Torayama, H. Asada, M. Fujiwara, T. Matsushita, Poly-
hedron 1998, 17, 3859.
[20] F. Corazza, E. Solari, C. Floriani, A. Chiesi-Villa, C. Guastini,
J. Chem. Soc., Dalton Trans. 1990, 1335.
[21] C. R. Cornman, K. M. Geiser-Bush, S. P. Rowley, P. D. Boyle,
Inorg. Chem. 1997, 36, 6401.
[22] E. Sinn, W. T. Robinson, J. Chem. Soc., Chem. Commun.
1972, 359.
[23] H. Shimanouchi, Y. Sasada, H. Yokoi, Acta Crystallogr. Sect.
B 1979, 35, 162.
[24] S. Yamada, M. Yasui, T. Nogami, T. Ishid, Dalton Trans.
2006, 1622.
Supporting Information (see footnote on the first page of this arti-
cle): Packing diagram for 1 (Figure S1), plot of χM vs. T for 1
(Figure S2), field dependence of magnetization for 1 at 2 K (Figure
S3), χMT values at room temperature for different trinuclear nickel
Ϫ1
Z. Anorg. Allg. Chem. 2009, 1442Ϫ1446
2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1445