G Model
CARP-8773; No. of Pages9
ARTICLE IN PRESS
8
T. Borke et al. / Carbohydrate Polymers xxx (2014) xxx–xxx
was stable upon storage in the dry form at ambient conditions
and in aqueous solution of neutral pH. Kinetic studies showed
that DMT-MM activates the carboxylic acid groups of HA fast and
quantitatively, yielding a stabilized intermediate. Furthermore the
amine basicity and stoichiometry were found to be the limiting fac-
tors for controlling DS. During the reaction the coupling reagent
is converted into soluble by-products that can be removed eas-
ily. 6-Methoxy-3-methyl-1,3,5-triazine-2,4-dione, an isocyanuric
acid derivative with one migrated methyl group, was found to be
the stable by-product in aqueous solution at RT. Understanding
the role of the amine was critical for establishing effective syn-
thetic parameters. The triazine-mediated synthesis of functional
HA derivatives followed by conjugation by “click” chemistry of suit-
ably functionalized molecules provides a mild and efficient route
towards well-defined bioconjugates.
Gagliardi, L. G., Castells, C. B., Ràfols, C., Rosés, M.,
& Bosch, E. (2007). ı
Conversion parameter between pH scales in acetonitrile/water mixtures at var-
ious compositions and temperatures. Analytical Chemistry, 79(8), 3180–3187.
Garg, H. G., & Hales, C. A. (2004). Chemistry and biology of hyaluronan. Amster-
dam/Boston: Elsevier.
Hasani, M. M.,
for homogeneous
&
Westman, G. (2007). New coupling reagents
esterification of. Cellulose, 14(4), 347–356.
Houson, I. (2011). Process understanding: For scale-up and manufacture of active ingre-
dients. John Wiley & Sons.
Huerta-Angeles, G., Neˇmcová, M., Prˇíkopová, E., Smejkalová, D., Pravda, M., Kucˇera, L.,
ˇ
et al. (2012). Reductive alkylation of hyaluronic acid for the synthesis of biocom-
patible hydrogels by click chemistry. Carbohydrate Polymers, 90(4), 1704–1711.
Jarman, M., Coley, H. M., Judson, I. R., Thornton, T. J., Wilman, D. E. V., Abel, G.,
et al. (1993). Synthesis and cytotoxicity of potential tumor-inhibitory analogs
of trimelamol (2,4,6-tris[(hydroxymethyl)methylamino]-1,3,5-triazine) having
electron-withdrawing groups in place of methyl. Journal of Medicinal Chemistry,
Jing, J., Alaimo, D., Vlieghere, E. D., Jérôme, C., Wever, O. D., Geest, B. G. D., et al.
(2013). Tunable self-assembled nanogels composed of well-defined thermore-
sponsive hyaluronic acid–polymer conjugates. Journal of Materials Chemistry B,
Acknowledgements
Kamin´ ski, Z. J. (1985). 2-Chloro-4,6-disubstituted-1,3,5-triazines
a
novel
The authors gratefully acknowledge the project funding by the
Academy of Finland, grant number 263573, and the Finnish Fund-
ing Agency for Technology and Innovation (Tekes), grant number
40339/12. Furthermore we thank Mr. Fabian Pooch for enzymati-
cally hydrolyzed hyaluronic acid.
group of condensing reagents. Tetrahedron Letters, 26(24), 2901–2904.
Kamin´ ski, Z. J. (1994). The concept of superactive esters. International Jour-
Kamin´ ski, Z. J. (2000). Triazine-based condensing reagents. Peptide Sci-
ence,
55(2),
140–164.
Appendix A. Supplementary data
Kamin´ ska, J. E., Kamin´ ski, Z. J., & Góra, J. (1999). 2-Acyloxy-4,6-dimethoxy-1,3,5-
triazine – A new reagent for ester synthesis. Synthesis, 1999(04), 593–596.
Supplementary data associated with this article can be
Kamin´ ski, Z. J., Kolesin´ ska, B., Kolesin´ ska, J., Sabatino, G., Chelli, M., Rovero, P., et al.
(2005). N-Triazinylammonium tetrafluoroborates. A new generation of efficient
coupling reagents useful for peptide synthesis. Journal of the American Chemical
Kamin´ ski, Z. J., Paneth, P., & Rudzin´ ski, J. (1998). A study on the activation of
carboxylic acids by means of 2-chloro-4,6-dimethoxy-1,3,5-triazine and 2-
chloro-4,6-diphenoxy-1,3,5-triazine. The Journal of Organic Chemistry, 63(13),
References
Bencherif, S. A., Washburn, N. R.,
& Matyjaszewski, K. (2009). Synthesis by
Kunishima, M., Kawachi, C., Hioki, K., Terao, K., & Tani, S. (2001). Formation of carbox-
amides by direct condensation of carboxylic acids and amines in alcohols using
a new alcohol- and water-soluble condensing agent: DMT-MM. Tetrahedron,
AGET ATRP of degradable nanogel precursors for in situ formation of nano-
structured hyaluronic acid hydrogel. Biomacromolecules, 10(9), 2499–2507.
Bergman, K., Elvingson, C., Hilborn, J., Svensk, G., & Bowden, T. (2007). Hyaluronic
acid derivatives prepared in aqueous media by triazine-activated amidation.
Bertozzi, C. R., & Bednarski, M. D. (1991). The synthesis of heterobifunctional link-
ers for the conjugation of ligands to molecular probes. The Journal of Organic
Kunishima, M., Kawachi, C., Iwasaki, F., Terao, K.,
& Tani, S. (1999).
Synthesis and characterization of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-
4-methylmorpholinium chloride. Tetrahedron Letters, 40(29), 5327–5330.
Kunishima, M., Kawachi, C., Monta, J., Terao, K., Iwasaki, F., & Tani, S. (1999). 4-(4,6-
Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride: An efficient
condensing agent leading to the formation of amides and esters. Tetrahedron,
Kunishima, M., Kitamura, M., Tanaka, H., Nakakura, I., Moriya, T., & Hioki, K. (2013).
Bulpitt, P.,
& Aeschlimann, D. (1999). New strategy for chemical modifi-
cation of hyaluronic acid: Preparation of functionalized derivatives and
their use in the formation of novel biocompatible hydrogels. Journal
Coviello, T., Matricardi, P., Marianecci, C., & Alhaique, F. (2007). Polysaccharide
hydrogels for modified release formulations. Journal of Controlled Release, 119(1),
Crescenzi, V., Cornelio, L., Di Meo, C., Nardecchia, S., & Lamanna, R. (2007). Novel
hydrogels via click chemistry: Synthesis and potential biomedical applications.
Kuo, J. W., Swann, D. A.,
& Prestwich, G. D. (1991). Chemical modification
of hyaluronic acid by carbodiimides. Bioconjugate Chemistry, 2(4), 232–241.
Kurisawa, M., Chung, J. E., Yang, Y. Y., Gao, S. J., & Uyama, H. (2005). Injectable
biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates
for drug delivery and tissue engineering. Chemical Communications, (34),
Cronin, J. S., Ginah, F. O., Murray, A. R.,
& Copp, J. D. (1996). An
improved procedure for the large scale preparation of 2-chloro-4,6-
dimethoxy-1,3,5-triazine. Synthetic Communications, 26(18), 3491–3494.
Lutz, J.-F.,
& Börner, H. G. (2008). Modern trends in polymer bioconjugates
Di Meo, C., Capitani, D., Mannina, L., Brancaleoni, E., Galesso, D., De
Luca, G., et al. (2006). Synthesis and NMR characterization of new
hyaluronan-based NO donors. Biomacromolecules, 7(4), 1253–1260.
Dong, Y., Saeed, A. O., Hassan, W., Keigher, C., Zheng, Y., Tai, H., et al. (2012). One-step
preparation of thiol-ene clickable peg-based thermoresponsive hyperbranched
copolymer for in situ crosslinking hybrid hydrogel. Macromolecular Rapid Com-
Maleki, A., Kjøniksen, A.-L., & Nyström, B. (2008). Effect of pH on the behavior
of hyaluronic acid in dilute and semidilute aqueous solutions. Macromolecular
Nakajima, N., & Ikada, Y. (1995). Mechanism of amide formation by carbodiimide
for bioconjugation in aqueous media. Bioconjugate Chemistry, 6(1), 123–130.
Nandivada, H., Jiang, X., & Lahann, J. (2007). Click chemistry: Versatility and con-
trol in the hands of materials scientists. Advanced Materials, 19(17), 2197–2208.
Nimmo, C. M., Owen, S. C., & Shoichet, M. S. (2011). Diels-Alder click cross-linked
hyaluronic acid hydrogels for tissue engineering. Biomacromolecules, 12(3),
Oh, E. J., Kang, S.-W., Kim, B.-S., Jiang, G., Cho, I. H., & Hahn, S. K. (2008). Control
of the molecular degradation of hyaluronic acid hydrogels for tissue aug-
mentation. Journal of Biomedical Materials Research Part A, 86A(3), 685–693.
Drˇímalová, E., Velebny´, V., Sasinková, V., Hromádková, Z.,
& Ebringerová, A.
(2005). Degradation of hyaluronan by ultrasonication in comparison to
microwave and conventional heating. Carbohydrate Polymers, 61(4), 420–426.
Elder, A. N., Dangelo, N. M., Kim, S. C., & Washburn, N. R. (2011). Conjugation
of -sheet peptides to modify the rheological properties of hyaluronic acid.
Farkasˇ, P., & Bystricky´, S. (2007). Efficient activation of carboxyl polysaccharides
for the preparation of conjugates. Carbohydrate Polymers, 68(1), 187–190.
Please cite this article in press as: Borke, T., et al. Optimized triazine-mediated amidation for efficient and controlled functionalization