D.K. Mishra, J.-S. Hwang / Applied Catalysis A: General 453 (2013) 13–19
19
4. Conclusions
[6] N. Déchamp, A. Gamez, A. Perrard, P. Gallezot, Catal. Today 24 (1995) 29–34.
[7] J.-P. Mikkola, H. Vainio, T. Salmi, R. Sjöholm, T. Ollonqvist, J. Väyrynen, Appl.
Catal. A: Gen. 196 (2000) 143–155.
NiO-modified TiO2 support ruthenium catalyst is successfully
prepared by impregnation method. In the Ru (1.0%)/NiO (5.0%)-
TiO2 catalyst, ruthenium is highly dispersed over a new class of
NiO-modified TiO2 (NiO-TiO2) support. The hydrogenation of d-
mannose to mannitol using Ru (1.0%)/NiO (5.0%)-TiO2 catalyst is
of first order with respect to d-mannose concentration. The acti-
vation energy for hydrogenation of d-mannose is low indicating
catalyst Ru (1.0%)/NiO (5.0%)-TiO2 is active for d-mannose hydro-
genation. The catalyst Ru (1.0%)/NiO (5.0%)-TiO2 is very stable and
can be used several times with only a small decrease of d-mannitol
yield. Optimized reaction conditions allowing maximum conver-
sion of d-mannose as well as maximum yield and selectivity to
d-mannitol were as follows; 1.0 g of catalyst Ru (1.0%)/NiO (5.0%)-
TiO2, at impeller speed of 1200 rpm, at temperature of 120 ◦C and at
hydrogen H2 pressure of 55 bar for 240 min. Overall, it is concluded
that the novel catalyst Ru (1.0%)/NiO (5.0%)-TiO2 can be used for all
industrial applications in hydrogenation of carbohydrate sugar to
sugar alcohols.
[8] B. Kusserow, S. Schimpf, P. Claus, Adv. Synth. Catal. 345 (2003) 289–299.
[9] B.W. Hoffer, E. Crezee, P.R.M. Mooijman, A.D. van Langeveld, F. Kapteijn, J.A.
Moulijn, Catal. Today 79–80 (2003) 35–41.
[10] K. van Gorp, E. Boerman, C.V. Cavenaghi, P.H. Berben, Catal. Today 52 (1999)
349–361.
[11] D.K. Mishra, J.-M. Lee, J.-S. Chang, J.-S. Hwang, Catal. Today 185 (2012) 104–108.
[12] E. Crezee, B.W. Hoffer, R.J. Berger, M. Makkee, F. Kapteijn, J.A. Moulijn, Appl.
Catal. A: Gen. 251 (2003) 1–17.
[13] H. Guo, H. Li, J. Zhu, W. Ye, M. Qiao, W. Dai, J. Mol. Catal. A: Chem. 200 (2003)
213–221.
[14] H. Guo, H. Li, Y. Xu, M. Wang, Mater. Lett. 57 (2002) 392–398.
[15] A. Perrard, P. Gallezot, J.-P. Joly, R. Durand, C. Baljou, B. Coq, P. Trens, Appl. Catal.
A: Gen. 331 (2007) 100–104.
[16] M. Yadav, D.K. Mishra, J.-S. Hwang, Appl. Catal. A: Gen. 425–426 (2012)
110–116.
[17] J. Kuusisto, J.-P. Mikkola, M. Sparv, J. Wärnå, H. Karhu, T. Salmi, Chem. Eng. J.
139 (2008) 69–77.
[18] B. Toukoniitty, J. Kuusisto, J.P. Mikkola, T. Salmi, D.Yu. Murzin, Ind. Eng. Chem.
Res. 44 (2005) 9370–9375.
[19] J. Kuusisto, J.P. Mikkola, P.P. Casal, H. Karhu, J. Vayrynen, T. Salmi, Chem. Eng. J.
115 (2005) 93–102.
[20] H.W. Wisselink, R.A. Weusthuis, G. Eggink, J. Hugenholtz, G.J. Grobben, Int. Diary
J. 12 (2002) 151–161.
[21] F.N.W. von Weymarn, K.J. Kiviharju, S.T. Jaaskelainen, M.S.A. Leisola, Biotechnol.
Prog. 19 (2003) 815–821.
[22] W. Soetaert, P.T. Vanhooren, E.J. Vandamme, Methods Biotechnol. 10 (1999)
261–275.
Acknowledgements
[23] T.T. Ikawa, T. Watanabe, K. Nisizawa, Plant Cell Physiol. 13 (1972) 1017–1027.
[24] J.M.H. Stoop, J.D. Williamson, D.M. Pharr, Trends Plant Sci. 5 (1996) 139–144.
[25] J.B.W. Hammond, R. Nichols, J. Gen. Microbiol. 93 (1976) 309–320.
[26] Z. Bano, S. Rajarathnam, Crit. Rev. Food Sci. Nutr. 27 (1988) 87–158.
[27] J.-L. Mau, C.-C. Chyau, J.-Y. Li, Y.-H Tseng, J. Agric. Food Chem. 45 (1997)
4726–4729.
This work was supported by the Institutional Research Program
of KRICT (SI-1201) and by a grant (B551179-10-03-00) from the
cooperative R&D Program funded by the Korea Research Council
Industrial Science and Technology, Republic of Korea.
[28] A.W. Heinen, J.A. Peters, H. van Bekkum, Carbohydr. Res. 328 (2000) 449–457.
[29] M. Makkee, A.P.G. Kieboom, H. van Bekkum, Starch 37 (1985) 136–141.
[30] J. Wisnlak, R. Simon, Ind. Eng. Chem. Prod. Res. Dev. 18 (1979) 50–57.
[31] M. Takemura, M. Iijima, Y. Tateno, Y. Osada, H. Maruyama, US Patent 4083881,
11.4.1978.
[32] J. Zhang, L. Lin, J. Zhang, J. Shi, Carbohydr. Res. 346 (2011) 1327–1332.
[33] J.T. Richardson, R. Scates, M.V. Twigg, Appl. Catal. A 246 (2003) 137–150.
[34] A.K. Coker, Modeling of Chemical Kinetics and Reactor Design, Gulf Publishing
Company, Houston, 2001.
References
[1] B.W. Hoffer, E. Crezee, F. Devred, P.R.M. Mooijman, W.G. Sloof, P.J. Kooyman,
A.D. van Langeveld, F. Kapteijn, J.A. Moulijn, Appl. Catal. A: Gen. 253 (2003)
437–452.
[2] P. Gallezot, P.J. Cerino, B. Blanc, G. Flèche, P. Fuertes, J. Catal. 146 (1994) 93–102.
[3] P.J. Cerino, G. Fleche, P. Gallezot, J.P. Salome, Stud. Surf. Sci. Catal. 59 (1991)
231–236.
[35] T. Furusawa, J.M. Smith, AIChE J. 20 (1974) 88.
[36] H.C.M. Pijnenburg, B.F.M. Kuster, H.S. van der Baan, Starch 30 (1978) 352–355.
[4] H. Li, W. Wang, J.F. Deng, J. Catal. 191 (2000) 257–260.
[5] S. Schimpf, C. Louis, P. Claus, Appl. Catal. A: Gen. 318 (2007) 45–53.