The saturation kinetics in the case of GSB was previously
determined by monitoring the disappearance of the thiolester
functionality of GSB at 266 nm by UV spectroscopy.27
5 S. J. Rowan and J. K. M. Sanders, Curr. Opin. Chem. Biol., 1997, 1,
483–490.
6 D. N. Bolon and S. L. Mayo, Proc. Natl. Acad. Sci. U. S. A., 2001, 98,
14274–14279.
7 M. A. Dwyer, L. L. Looger and H. W. Hellinga, Science, 2004, 304,
1967–1971.
8 D. E. Benson, M. S. Wisz and H. W. Hellinga, Proc. Natl. Acad. Sci.
U. S. A., 2000, 97, 6292–6297.
Background hydrolysis rate
N-Acetylated GS-2 was synthesized by adding four portions of
10 equivalents of sulfo-N-hydroxysuccinimide acetate during a
period of four hours to GS-2 (final concentration 75 lM) in
100 mM NaPi pH 7. HPLC was used to confirm the acetylation
of GS-2. The background hydrolysis sample was incubated at
25 ◦C and time points were collected over 11 days and mixed with
internal standard and trifluoroacetic acid to quench the reaction
whereupon the samples were stored frozen until analysis. Reversed
phase HPLC was used to determine the remaining concentration
of N-acetylated GS-2.
9 Y. Wei and M. H. Hecht, Protein Eng., Des. Sel., 2004, 17, 67–75.
10 A. Tramontano, K. D. Janda and R. A. Lerner, Science, 1986, 234,
1566–1570.
11 S. J. Pollack, J. J. W. and P. G. Schultz, Science, 1986, 234, 1570–1573.
12 D. Hilvert, Annu. Rev. Biochem., 2000, 69, 751–793.
13 E. T. Farinas, T. Bulter and F. H. Arnold, Curr. Opin. Biotechnol., 2001,
12, 545–551.
14 D. Y. Jackson, J. R. Prudent, E. P. Baldwin and P. G. Schultz, Proc.
Natl. Acad. Sci. U. S. A., 1991, 88, 58–62.
15 D. F. Qi, C. M. Tann, D. Haring and M. D. Distefano, Chem. Rev.,
2001, 101, 3081–3111.
16 I. Hamachi, T. Nagase, Y. Tajiri and S. Shinkai, Bioconjugate Chem.,
1997, 8, 862–868.
17 G. DeSantis and J. B. Jones, Curr. Opin. Biotechnol., 1999, 10, 324–330.
18 K. Lim, J. X. Ho, K. Keeling, G. L. Gilliland, X. H. Ji, F. Ruker and
D. C. Carter, Protein Sci., 1994, 3, 2233–2244.
19 B. Ketterer, Chem.-Biol. Interact., 2001, 138, 27–42.
20 D. Sheehan, G. Meade, V. M. Foley and C. A. Dowd, Biochem. J., 2001,
360, 1–16.
21 R. C. Strange, M. A. Spiteri, S. Ramachandran and A. A. Fryer, Mutat.
Res., 2001, 482, 21–26.
22 R. N. Armstrong, Chem. Res. Toxicol., 1997, 10, 2–18.
23 B. Mannervik, Biochem. Soc. Trans., 1996, 24, 878–880.
24 N. E. Pettigrew and R. F. Colman, Arch. Biochem. Biophys., 2001, 396,
225–230.
Computer simulations
The PDB file 1USB was used as a starting structure for the
simulations and a subset of acids were covalently attached to
produce an ester at the side chain of Y9 before the computer
simulations were started. The energy of the modified structure was
then minimized by a Monte Carlo-based method as implemented
in the ICM program (Molsoft LLC, La Jolla, CA). The method
uses the ECEPP/3 forcefield41 and a form of implicit solvation
called atomic solvation.42 For non-bonded interactions the energy
function is a combination of van der Waals interaction,43 hydrogen
bonding,43 torsion energy43 and electrostatic interactions.44 Amino
acid residues included in the simulation where located within a
25 J. D. Hayes and D. J. Pulford, Crit. Rev. Biochem. Mol. Biol., 1995, 30,
445–600.
26 I. Sinning, G. J. Kleywegt, S. W. Cowan, P. Reinemer, H. W. Dirr, R.
Huber, G. L. Gilliland, R. N. Armstrong, X. H. Ji, P. G. Board, B. Olin,
B. Mannervik and T. A. Jones, J. Mol. Biol., 1993, 232, 192–212.
27 S. Hederos, K. S. Broo, E. Jakobsson, G. J. Kleywegt, B. Mannervik
and L. Baltzer, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 13163–13167.
28 S. D. Copley, Curr. Opin. Chem. Biol., 2003, 7, 265–272.
29 R. J. Kazlauskas, Curr. Opin. Chem. Biol., 2005, 9, 195–201.
30 U. T. Bornscheuer and R. J. Kazlauskas, Angew. Chem., Int. Ed., 2004,
43, 6032–6040.
˚
sphere of 5 A around Y9. Remaining residues of the molecule were
fixed in order to speed up the calculations. Thus, 18 residues (7–16,
20, 33–35, 55–57 and 216) were included in the energy minimiza-
tion, but in order for the Monte Carlo method to work there must
be at least four amino acid residues in sequence. Therefore, only
ten of the residues (7–16) could be run through the Monte Carlo
minimization and the other eight residues were minimized with
localized methods in the Monte Carlo simulation. Between four
and fourteen simulations with one million Monte Carlo iterations
per simulation were performed for each thiolester substrate.
31 B. G. Miller and R. Wolfenden, Annu. Rev. Biochem., 2002, 71, 847–
885.
32 S. Hakansson, J. Viljanen and K. S. Broo, Biochemistry, 2003, 42,
10260–10268.
33 J. Viljanen, L. Tegler and K. S. Broo, Bioconjugate Chem., 2004, 15,
718–727.
34 E. C. Dietze, M. P. Grillo, T. Kalhorn, B. S. Nieslanik, C. M. Jochheim
and W. M. Atkins, Biochemistry, 1998, 37, 14948–14957.
35 S. Hederos and K. S. Broo, unpublished results.
36 C. Ibarra, M. P. Grillo, M. Lo Bello, M. Nucettelli, T. K. Bammler and
W. M. Atkins, Arch. Biochem. Biophys., 2003, 414, 303–311.
37 A. Gustafsson, P. L. Pettersson, L. Grehn, P. Jemth and B. Mannervik,
Biochemistry, 2001, 40, 15835–15845.
38 A. Gustafsson and B. Mannervik, J. Mol. Biol., 1999, 288, 787–800.
39 W. H. Habig and W. B. Jakoby, Methods Enzymol., 1981, 77.
40 K. S. Broo, H. Nilsson, J. Nilsson and L. Baltzer, J. Am. Chem. Soc.,
1998, 120, 10287–10295.
Acknowledgements
We thank Professor B. H. Jonsson (Linko¨ping University) for
critical reading of the manuscript. This work was financially
supported by The Wenner-Gren Foundation, The Carl-Trygger
Foundation, The Knut and Alice Wallenberg Foundation, and
the Swedish Research Council. S.H. is enrolled in the graduate
school Forum Scientium, supported by the Swedish Foundation
for Strategic Research (SSF).
41 G. Nemethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini,
A. Zagari, S. Rumsey and H. A. Scheraga, J. Phys. Chem., 1992, 96,
6472–6484.
42 L. Wesson and D. Eisenberg, Protein Sci., 1992, 1, 227–235.
43 F. A. Momany, R. F. McGuire, A. W. Burgess and H. A. Scheraga,
J. Phys. Chem., 1975, 79, 2361–2381.
References
1 A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts and B.
Witholt, Nature (London), 2001, 409, 258–268.
2 T. M. Penning and J. M. Jez, Chem. Rev., 2001, 101, 3027–3046.
3 D. N. Bolon, C. A. Voigt and S. L. Mayo, Curr. Opin. Chem. Biol., 2002,
6, 125–129.
4 F. Cedrone, A. Menez and E. Quemeneur, Curr. Opin. Struct. Biol.,
2000, 10, 405–410.
44 J. Fernandez-Recio, M. Totrov and R. Abagyan, Protein Sci., 2002, 11,
280–291.
45 B. Mannervik, Y. C. Awasthi, P. G. Board, J. D. Hayes, C. Di Ilio, B.
Ketterer, I. Listowsky, R. Morgenstern, M. Muramatsu, W. R. Pearson,
C. B. Pickett, K. Sato, M. Widersten and C. R. Wolf, Biochem. J., 1992,
282, 305–306.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 90–97 | 9 7
©