Paper
RSC Advances
inhibitory concentration (MIC) of antimicrobial substances, 32 W. C. Lee, Z. Lewandowski, P. H. Nielsen and A. Hamilton,
Nat. Protoc., 2008, 3, 163–175.
Role of sulfate-reducing bacteria in corrosion of mild steel.
1
1
1
7 F. Vester and K. Ingvorsen, Improved most-probable-
number method to detect sulfate-reducing bacteria with 33 W. A. Hamilton, Sulphate-reducing bacteria and anaerobic
A review, Biofouling, 1995, 8, 165–194.
natural media and
a
radiotracer, J. Appl. Environ.
corrosion, Annu. Rev. Microbiol., 1985, 39, 195–217.
34 W. P. Iverson, G. J. Olson and L. F. Heverly, The role of
phosphorous and hydrogen sulde in the anaerobic
corrosion of iron and the possible detection of this
corrosion by an electrochemical noise technique, in
Biologically Induced Corrosion, ed. S. C. Dexter, NACE
International, Houston, TX, 1986, pp. 154–161.
Microbiol., 1998, 64, 1700–1707.
8 ASTM G4/95 (2001) ASTM G4 (2001) Standard Guide for
Conducting Corrosion Coupon Tests in Field Applications,
in Annual Book of American Society for Testing and Materials
Standards, 2001, pp. 49–57.
9 M. Wagner, N. P. Ivleva, C. Haisch, R. Niessner and H. Horn,
Combined use of confocal laser scanning microscopy 35 L. P ´e rez, M. T. Garcia, I. Ribosa, M. P. Vinardell, A. Manresa
(
CLSM) and Raman microscopy (RM): investigations on
and M. R. Infante, Biological properties of arginine-based
gemini cationic surfactants, Environ. Toxicol. Chem., 2002,
27, 1279–1285.
EPS-matrix, Water Res., 2009, 43, 63–76.
0 C. Perez, A. Pauli and P. Bazerque, An antibiotic assay by
2
2
2
2
2
2
agar well diffusion method, Acta Biol. Med. Exp., 1990, 15, 36 I. IKeda, Synthesis of gemini (dimeric) and related
1
13–115.
surfactants. In gemini surfactants. Synthesis, interfacial
and solution phase behavior and applications, in
Surfactant Science Series, ed. R. Zana and J. Xia, Marcel
Dekker, New York, NY, USA, 2004, pp. 10–27.
1 Y. Moroi, Relationship between solubility and micellization
of surfactants: the temperature range of micellization,
Prog. Colloid Polym. Sci., 1988, 77, 55–61.
2 S. K. Verma and K. K. Ghosh, Micellar and Surface Properties 37 K. D. Brunt, Biocides for the oil industry, ed. H. C. Hill, Wiley,
of Some Monomeric Surfactants, J. Surfactants Deterg., 2011,
4, 347–352.
3 R. Atkin, V. S. J. Craig, E. J. Wanless and S. Biggs, Mechanism
of cationic surfactant adsorption at the solid-aqueous
interface, Adv. Colloid Interface Sci., 2003, 103, 219–304.
New York, 1987, p. 201.
1
38 L. Ringstad, L. Kacprzyk, A. Schmidtchen and M. Malmsten,
Effects of topology, length, and charge on the activity of
a kininogen-derived peptide on lipid membranes and
bacteria, Biochim. Biophys. Acta, 2007, 1768, 715–727.
4 J. Mata, D. Varade and P. Bahadur, Aggregation behavior of 39 A. Makovitzki and Y. Shai, pH-dependent antifungal lipo-
quaternary salt based cationic surfactants, Thermochim. Acta,
005, 428, 147–155.
peptides and their plausible mode of action, Biochemistry,
2005, 44, 9775–9784.
2
5 A. M. Badawi, M. A. Hegazy, A. A. El-Sawy, H. M. Ahmed and 40 M. Diz, A. Manresa, A. Pinazo, P. Erra and M. R. Infante,
W. M. Kamel, Novel quaternary ammonium hydroxide
cationic surfactants as corrosion inhibitors for carbon steel
Synthesis, surface active properties and antimicrobial
activity, J. Chem. Soc., Perkin Trans. 2, 1994, 1871–1876.
and as biocides for sulfate-reducing bacteria (SRB), Mater. 41 S. E. Werner, C. A. Johnson, N. J. Laycock, P. T. Wilson and
Chem. Phys., 2010, 124, 458–465.
6 R. Zana, H. Levy, D. Danino, Y. Talman and K. Kwetkat,
Micellization of cetyltrimethylammonium bromide and an
B. J. Webster, Pitting of type 304 stainless steel in the
presence of biolm containing sulphate reducing
bacteria, Corros. Sci., 1998, 40, 465–480.
2
a
anionic dimeric (gemini) surfactant in aqueous solution, 42 A. Labena, M. A. Hegazy, H. Horn and E. M u¨ ller, The biocidal
Langmuir, 1997, 13, 402–408.
effect of a novel synthesized gemini surfactant on
2
7 M. Klein, M. Friedrich, A. J. Roger, P. Hugenholtz,
S. Fishbain, H. Abicht, L. L. Blackall, D. A. Stahl and
M. Wagner, J. Bacteriol., 2001, 183, 6028–6035.
8 J. Geets, B. Borremans, L. Diels, D. Springael,
J. Vangronsveld, D. V. Lilie and K. Vanbroekhoven, DsrB
environmental suldogenic bacteria: planktonic cells and
biolms, Mater. Sci. Eng. C, 2015, 47, 367–375.
43 A. K. Skolink, W. C. Hughes and B. H. Augustine, A metallic
surface corrosion study in aqueous NaCl solution using
Atomic Force Microscopy (AFM), Chem. Educ., 2000, 5, 8–13.
2
gene based DGGE for community and diversity surveys of 44 K. Thangavel and N. S. Rengaswamy, Relationship between
sulfate-reducing bacteria, J. Microbiol. Methods., 2006, 66,
94–205.
chloride/hydroxide ratio and corrosion rate of steel in
concrete, Cem. Concr. Compos., 1998, 20, 283–292.
1
29 G. Muyzer and A. M. Stams, The ecology and biotechnology 45 A. Z. Naqvi, G. A. Al-dahbali and M. Akram, Kabir-ud-Din,
of sulphate-reducing bacteria, Nat. Rev., 2008, 6, 441–454.
0 N. Pfennig, F. Widdel and H. G. Truper, The dissimilatory
sulfate-reducing bacteria, in The Prokaryotes: A Handbook
Adsorption and micellization behavior of cationic
surfactants (gemini and conventional)—amphiphilic drug
systems, J. Solution Chem., 2013, 42, 172–189.
3
on Habitats, ed. M. P. Starr, M. Stolp, H. G. Truper, A. 46 V. S. Sastri, Corrosion inhibitor, Wiley, New York, 1998, vol.
Balows and H. G. Schlegel, New York, Springer-Verlag,
981, pp. 926–940.
1 B. J. Little and J. S. Lee, Microbiologically Inuenced
Corrosion, John Wiley & Sons Inc., Hoboken, NJ, USA, 2007,
pp. 1–50.
373, pp. 39–40.
1
47 A. A. Farhat and M. A. Quraishi, Inhibitive performance of
gemini surfactants as corrosion inhibitors for mild
steel in formic acid, Port. Electrochim. Acta, 2010, 28,
321–335.
3
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 42263–42278 | 42277