Organic Letters
Letter
(e) Thota, G. K.; Sun, G.-J.; Deng, T.; Li, Y.; Kang, Q. Adv. Synth.
Catal. 2018, 360, 1.
quaternary stereocenter-containing cyclohexenones (11 exam-
ples, 43−83% yield). Copper(II) salts were discovered to be
unique catalysts for these Michael reactions as the other Lewis
and Brønsted acids evaluated in these studies were inferior to
Cu(II) catalysts. A similar protocol could be applied to achieve
the formation of cyclohexenes with vicinal tertiary centers (cf.
SI and Scheme 2). The later substrates were also formed
asymmetrically using chiral bis(oxazoline) copper(II) com-
plexes as the catalysts. This single-pot enantioselective
Robinson annulation was used to generate chiral cyclo-
hexenones containing vicinal stereocenters (4 examples, 65−
85% yield, 84−94% ee). In addition, this latter protocol was
successfully applied to accomplish a single-pot enantioselective
formation of an oxygenated 10-nor-steroid core from readily
available starting materials in excellent yield and selectivity
(85% yield, 93% ee, 8:1 dr). The further application of these
methods in the synthesis of natural diterpenes and 10-nor-
steroids15 is the subject of our ongoing studies.
(4) Organocatalytic decarboxylative Michael reactions: (a) Lubkoll,
J.; Wennemers, H. Angew. Chem., Int. Ed. 2007, 46, 6841. (b) Moon,
H. W.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6569. (c) Kang, K. Y.;
Lee, H. J.; Moon, H. W.; Kim, D. Y. RSC Adv. 2013, 3, 1332. (d) Qiao,
B.; Liu, Q.; Liu, H.; Yan, L.; Jiang, Z. Chem. - Asian J. 2014, 9, 1252.
(e) Ren, Q.; Gao, T.; Li, W.; Wan, L.; Hu, Y.; Peng, Y.; Sun, S.; Hu, L.;
Wu, M.; Guo, H.; Wang, J. New J. Chem. 2015, 39, 5100. (f) Wei, Y.;
Guo, R.; Dang, Y.; Nie, J.; Ma, J.-A. Adv. Synth. Catal. 2016, 358, 2721.
(g) Kaur, J.; Kumari, A.; Bhardwaj, V. K.; Chimni, S. S. Adv. Synth.
Catal. 2017, 359, 1725.
(5) Zhang, S.; Tan, Z.; Zhang, H.; Liu, J.; Xua, W.; Xu, K. Chem.
Commun. 2017, 53, 11642.
(6) (a) Cichowicz, N.; Kaplan, W.; Khomutnyk, I.; Bhattarai, B.; Sun,
Z.; Nagorny, P. J. Am. Chem. Soc. 2015, 137, 14341. (b) Nagorny, P.;
Cichowicz, N. Strategies and Tactics in Organic Synthesis 2016, 12, 237.
(c) Kaplan, W.; Khatri, H. R.; Nagorny, P. J. Am. Chem. Soc. 2016, 138,
7194. (d) Bhattarai, B.; Nagorny, P. Org. Lett. 2018, 20, 154.
(7) Cu(II)-catalyzed Michael reactions: (a) Saegusa, T.; Ito, Y.;
Tomita, S.; Kinoshita, H. Bull. Chem. Soc. Jpn. 1972, 45, 496.
(b) Desimoni, G.; Quadrelli, P.; Righetti, P. P. Tetrahedron 1990, 46,
2927. (c) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2000, 39,
2752. (d) Yadav, J. S.; Reddy, B. V. S.; Baishya, G.; Narsaiah, V. A.
Chem. Lett. 2005, 34, 102. (e) Mekonnen, A.; Carlson, R. Eur. J. Org.
Chem. 2006, 2006, 2005. (f) Perez, E.; Moreno-Manas, M.; Sebastian,
R. M.; Vallribera, A.; Jutand, A. Eur. J. Inorg. Chem. 2010, 2010, 1013.
(g) Oe, K.; Ohfune, Y.; Shinada, T. Org. Lett. 2014, 16, 2550.
(8) Cu(II)·Box complex-catalyzed enantioselective Mukaiyama
Michael reactions: (a) Evans, D. A.; Rovis, T.; Johnson, J. S. Pure
Appl. Chem. 1999, 71, 1407. (b) Evans, D. A.; Rovis, T.; Kozlowski, M.
C.; Tedrow, J. S. J. Am. Chem. Soc. 1999, 121, 1994. (c) Johnson, J. S.;
Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (d) Evans, D. A.; Scheidt,
K. A.; Johnston, J. N.; Willis, M. C. J. Am. Chem. Soc. 2001, 123, 4480.
(9) Prior attempts to accomplish direct Cu(II)·Box complex-
catalyzed enantioselective Michael reactions of 1,3-dicarbonyls and
enones resulting in unselective reactions: (a) Comelles, J.; Moreno-
Manas, M.; Perez, E.; Roglans, A.; Sebastian, R. M.; Vallribera, A. J.
Org. Chem. 2004, 69, 6834. (b) Zhang, M.; Liu, N.; Tang, W. J. Am.
Chem. Soc. 2013, 135, 12434.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
1
Experimental procedures and H and 13C NMR spectra
Accession Codes
CCDC 1586998 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
(10) Examples of Michael reactions of β,β′-substituted enones under
ultra high pressure: (a) Dauben, W. G.; Bunce, R. A. J. Org. Chem.
1983, 48, 4642. (b) Dauben, W. G.; Gerdes, J. M. Tetrahedron Lett.
1983, 24, 3841.
(11) Examples of Mukaiyama Michael reactions of β,β′-substituted
enones: (a) Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. Tetrahedron
1983, 39, 117. (b) Kawai, M.; Onaka, M.; Izumi, Y. Bull. Chem. Soc.
Jpn. 1988, 61, 2157. (c) Lee, P. H.; Seomoon, D.; Lee, K.; Heo, Y. J.
Org. Chem. 2003, 68, 2510. (d) Jung, M. E.; Ho, D. G. Org. Lett. 2007,
9, 375.
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(12) For the recent overview of asymmetric Robinson annulations
refer to: Gallier, F.; Martel, A.; Dujardin, G. Angew. Chem., Int. Ed.
2017, 56, 12424.
(13) Mekonnen, A.; Carlson, R. Eur. J. Org. Chem. 2006, 2006, 2005.
(14) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005,
127, 6932.
ACKNOWLEDGMENTS
■
This work has been supported by the NIH (R01GM111476).
P.N. is the Sloan Fellow and Amgen Young Investigator. S.W. is
the recipient of the Gates Millenium Fellowship.
(15) Examples of bioactive natural 10-nor-steroids similar to 6e:
Tian, D.-M.; Cheng, H.-Y.; Jiang, M.-M.; Shen, W.-Z.; Tang, J.-S.; Yao,
X.-S. J. Nat. Prod. 2016, 79, 38.
(16) In the absence of enone, β-keto acids were found to be stable
when exposed to Cu(II) salts. This observation further confirms that
decarboxylation takes place after the Michael addition step.
REFERENCES
■
(1) Wang, Z.-L. Adv. Synth. Catal. 2013, 355, 2745. (b) Nakamura, S.
Org. Biomol. Chem. 2014, 12, 394. (c) Pan, Y.; Tan, C.-H. Synthesis
2011, 13, 2044. (d) Weaver, J. D.; Recio, A., III; Grenning, A. J.;
Tunge, J. A. Chem. Rev. 2011, 111, 1846.
(2) (a) Lalic, G.; Aloise, A. D.; Shair, M. D. J. Am. Chem. Soc. 2003,
125, 2852. (b) Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.;
Aloise, A. D.; Shair, M. W. J. Am. Chem. Soc. 2005, 127, 7284.
(3) Metal-catalyzed decarboxylative Michael reactions: (a) Evans, D.
A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583.
(b) Furutachi, M.; Mouri, S.; Matsunaga, S.; Shibasaki, M. Chem. -
Asian J. 2010, 5, 2351. (c) Li, S.-W.; Gong, J.; Kang, Q. Org. Lett. 2017,
19, 1350. (d) Li, K.; Wan, Q.; Kang, Q. Org. Lett. 2017, 19, 3299.
D
Org. Lett. XXXX, XXX, XXX−XXX