Ligthart et al.
eminent importance for the development of main-chain su-
pramolecular polymers.18-22 However, the self-complementarity
of these units imposes restrictions to the self-assembly of
copolymers and the construction of supramolecular architectures
consisting of more than one compound. Given our research
interest in multiple hydrogen-bonding units as well as the recent
use of complementary recognition motifs in supramolecular
polymers, there is a clear need for strong complementary binding
motifs. A number of complementary multiple hydrogen-bonding
arrays have been developed, including ones based on oligoa-
mides,17 hydrazides,23 and pairs of heterocyclic building blocks,
such as naphthyridine-ureidopyridine,24 naphthyridine-ure-
idoguanosine,25,26 naphthyridine-ureidopyrimidinone,27 anthy-
ridine with dihydropyridine12 or an azapentacene analog with
dihydropyridine,28 and heterocyclic homodimers combined with
donor-acceptor interactions.29,30 In all these pairs, the individual
components either lack the high synthetic accessibility required
for use in supramolecular polymers or association to the
heterocomplexes is not fully selective.31-36 In this report, a study
into a new complementary hydrogen-bonding module is pre-
sented. The synthetic accessibility and binding capability of
3-ureido-1,2,4-triazine 1-N-oxide 1 and suitability as an accep-
tor-donor-acceptor-acceptor (ADAA) hydrogen-bonding scaf-
fold is reported. N-Oxides of nitrogen heterocycles have a
formally full negative charge on the oxygen atom, and pyridine
N-oxide has been reported to be a stronger hydrogen-bond
acceptor than pyridine.6,37-41 Therefore, strong binding by 1
FIGURE 1. Two conformations of 3-ureido-1,2,4-triazine 1-N-oxide
1 and their corresponding hydrogen-bonding array.
would be expected. Although 1 can be present in two possible
conformations, 1a and 1b, as displayed in Figure 1, the
equilibrium might be shifted toward the ADAA form upon
presenting to a complementary donor-acceptor-donor-donor
(DADD) partner.
We complement these experimental studies by density
functional quantum mechanical calculations to evaluate the
experimentally found binding properties of the compound.
Specifically, detailed geometric effects are studied, to reveal
overall large effects on the hydrogen-bonding strength. This
combination of experimental and theoretical data is then finally
discussed in detail to highlight frequently overlooked aspects
of binding in multiple hydrogen-bonding arrays: linearity of
the array and planarity of the overall donor-acceptor complex.
Results and Discussion
Synthesis and Characterization. Two general methods have
been reported for the synthesis of 1,2,4-triazine N-oxides: by
direct oxidation of the parent triazine with organic peroxides
or by the formation of the triazine N-oxide ring via cyclization.42
3-Aminobenzo-1,2,4-triazine 1-N-oxide (2) is a precursor to
tirapazamine (3-aminobenzo-1,2,4-triazine 1,4-dioxide), which
is a bioreductively activated DNA-damaging agent that selec-
(18) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J.
A. J. M.; Sijbesma, R. P.; Meijer, E. W. Nature 2000, 407, 167-170.
(19) Hirschberg, J. H. K. K.; Koevoets, R. A.; Sijbesma, R. P.; Meijer,
E. W. Chem. Eur. J. 2003, 9, 4222-4231.
(20) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.;
Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W.
Science 1997, 278, 1601-1604.
(21) Ky Hirschberg, J. H. K.; Beijer, F. H.; van Aert, H. A.; Magusin,
P. C. M. M.; Sijbesma, R. P.; Meijer, E. W. Macromolecules 1999, 32,
2696-2705.
tively kills the hypoxic cells found in solid tumors.43,44
A
common method to obtain 2 involves a (violently exothermic)
reaction of 2-nitroaniline with cyanamide.45-47 However, a more
elegant approach was introduced by Suzuki et al., who reported
the nucleophilic aromatic substitution between nitroarenes and
free guanidine base followed by base-induced cyclization.48,49
The free guanidine base was prepared by passing an aqueous
solution of guanidine hydrochloride through an ion exchange
column (DOWEX 550A OH) and evaporation of the eluate in
vacuo. 3-Aminobenzo-1,2,4-triazine 1-N-oxide (2) was subse-
quently obtained in 96% yield through reaction of o-fluoroni-
trobenzene with free guanidine followed by in situ cyclization
with t-BuOK. Condensation of 2 with n-butyl isocyanate gave
the desired product 1 as bright yellow crystals in 31% yield
(Scheme 1).
(22) Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt,
J. A. J.; Meijer, E. W. AdV. Mater. 2000, 12, 874-878.
(23) Zhao, X.; Wang, X.-Z.; Jiang, X.-K.; Chen, Y.-Q.; Li, Z.-T.; Chen,
G.-J. J. Am. Chem. Soc. 2003, 125, 15128-15139.
(24) Luning, U.; Kuhl, C. Tetrahedron Lett. 1998, 39, 5735-5738.
(25) Park, T.; Todd, E. M.; Nakashima, S.; Zimmerman, S. C. J. Am.
Chem. Soc. 2005, 127, 18133-18142.
(26) Ong, H. C.; Zimmerman, S. C. Org. Lett. 2006, 8, 1589-1592.
(27) Li, X.-Q.; Jiang, X.-K.; Wang, X.-Z.; Li, Z.-T. Tetrahedron 2004,
60, 2063-2069.
(28) Djurdjevic, S.; Leigh, D. A.; McNab, H.; Parsons, S.; Teobaldi,
G.; Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477.
(29) Wang, X.-Z.; Li, X.-Q.; Shao, X.-B.; Zhao, X.; Deng, P.; Jiang,
X.-K.; Li, Z.-T.; Chen, Y.-Q. Chem. Eur. J. 2003, 9, 2904-2913.
(30) Li, X.-Q.; Feng, D.-J.; Jiang, X.-K.; Li, Z.-T. Tetrahedron 2004,
60, 8275-8284.
(31) So¨ntjens, S. H. M.; Meijer, J. T.; Kooijman, H.; Spek, A. L.; van
Genderen, M. H. P.; Sijbesma, R. P.; Meijer, E. W. Org. Lett. 2001, 3,
3887-3889.
(32) Brammer, S.; Luning, U.; Kuhl, C. Eur. J. Org. Chem. 2002, 4054-
4062.
(33) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N.
A.; Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475-10488.
(34) Mayer, M. F.; Nakashima, S.; Zimmerman, S. C. Org. Lett. 2005,
7, 3005-3008.
(35) Yang, X.; Martinovic, S.; Smith, R. D.; Gong, B. J. Am. Chem.
Soc. 2003, 125, 9932-9933.
(36) Gong, B. Synlett. 2001, 582-589.
(37) Kulevsky, N.; Lewis, L. J. Phys. Chem. 1972, 76, 3502-3.
(38) Dega-Szafran, Z.; Kania, A.; Grundwald-Wyspianska, M.; Szafran,
M.; Tykarska, E. J. Mol. Stuct. 1996, 381, 107-125.
(39) Prezhdo, V. V.; Vashchenko, E. V.; Prezhdo, O. V. Russ. J. Gen.
Chem. (Translation of Zh. Obshch. Khim.) 2000, 70, 121-129.
(40) Moreno-Fuquen, R.; De Castro, E. V. R.; Moreno, M.; De Almeida
Santos, R. H.; Montano, A. M. Acta Crystallogr. 2000, C56, 206-207.
(41) Goswami, S.; Ghosh, K.; Mukherjee, R. Supramol. Chem. 2000,
11, 191-199.
(42) Kozhevnikov, D. N.; Rusinov, V. L.; Chupakhin, O. N. AdV.
Heterocycl. Chem. 2002, 82, 261-305.
(43) Birincioglu, M.; Jaruga, P.; Chowdhury, G.; Rodriguez, H.; Diz-
daroglu, M.; Gates, K. S. J. Am. Chem. Soc. 2003, 125, 11607-11615.
(44) Junnotula, V.; Sarkar, U.; Sinha, S.; Inman, C.; Barnes, C. L.; Gates,
K. S. Abstracts of Papers, 230th ACS National Meeting, Washington, DC,
Aug 28-Sept 1, 2005, TOXI-075.
(45) Arndt, F. Ber. 1913, 46, 3522-3532.
(46) Wolf, F. J.; Pfister, K., III; Wilson, R. M., Jr.; Robinson, C. A. J.
Am. Chem. Soc. 1954, 76, 3551-3.
(47) Wolf, F. J.; Wilson, R. M., Jr.; Pfister, K., 3rd; Tishler, M. J. Am.
Chem. Soc. 1954, 76, 4611-13.
(48) Suzuki, H.; Kawakami, T. Synthesis 1997, 855-857.
(49) Suzuki, H.; Kawakami, T. J. Org. Chem. 1999, 64, 3361-3363.
112 J. Org. Chem., Vol. 73, No. 1, 2008