4642
V. Polshettiwar, R.S. Varma / Tetrahedron 64 (2008) 4637e4643
after tituration by hexane and yielded 2.9 g of orange colored
PdeNHC complex (73%).
FTIR (KBr): 3121, 2974, 2929, 2885, 1458, 1079, 949, 794,
Education through an interagency agreement between the U.S.
Department of Energy and the U.S. Environmental Protection
Agency.
713 cmꢁ1
.
1H NMR (CDCl3): d 0.6 (8H, m), 1.16 (t, 36H, J¼7.2 Hz),
2.1 (8H, m), 3.77 (24H, q, J¼7.2 Hz), 4.3 (8H, m), 7.87 (4H,
s) ppm.
Supplementary data
Supplementary data associated with this article can be
13C NMR (CDCl3): d 7.6, 18.3, 23.5, 40.7, 53.3, 58.4,
120.9, 162.9 173.1 ppm.
MS (FABþ): (Mþ) 1315. Anal. Calcd for C42H90I2N4O12-
PdSi4: C, 38.34; H, 6.89; N, 4.26. Found: C, 38.31; H, 6.92;
N, 4.24%.
References and notes
1. (a) Yin, L.; Liebsher, J. Chem. Rev. 2007, 107, 133e173; (b) Tsuji, J.
Palladium Reagents and Catalysts; John Wiley and Sons: 2004; (c)
Heck, R. F. Palladium Reagents in Organic Synthesis; Academic: London,
1985.
4.5. Synthesis of PdeNHC organic silica (V)
2. (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581;
(b) Heck, R. F.; Nolly, J. P. J. Org. Chem. 1972, 37, 2320e2322; (c)
Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009e3066;
(d) Trzeciak, A. M.; Ziolkowski, J. J. Coord. Chem. Rev. 2005, 249,
2308e2322.
The oily Pdecarbene complex (IV) after evaporation of
THF (in above procedure) was dissolved in 4 mL of THF and
1.5 mL of 0.5 N NH4F was added to this solution. Gelification
of mixture occurred at room temperature within 10 min, which
was allowed to stand for 24 h. The solid orange colored or-
ganic silica (V) was then washed with ethanol and dried under
vacuum at 80 ꢀC.
3. (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36,
3437e3440; (b) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 15,
2419e2440; (c) Miyaura, N. Top. Curr. Chem. 2002, 219, 11e59.
4. (a) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633e
9695; (b) Herrmann, W. A.; Cornils, B. Angew. Chem., Int. Ed. 1997,
36, 1048e1067.
Yield: 2.4 g.
FTIR (KBr): 3120, 2930, 2863, 1126, 1001, 876, 691 cmꢁ1
.
5. Phan, N. T. S.; Sluys, M. V. D.; Jones, C. W. Adv. Synth. Catal. 2006, 348,
609e679.
29Si CP-MAS: d ꢁ59 (T2), ꢁ66 (T3) ppm. 13C CP-MAS:
d 11.1, 18.4, 24.6, 53.3, 57.8, 128.9, 166.1 ppm.
BET: porosity 5 m2/g.
6. Polshettiwar, V.; Molnar, A. Tetrahedron 2007, 63, 6949e6976.
7. (a) Crudden, C. M.; Sateesh, M.; Lewis, R. J. Am. Chem. Soc. 2005, 127,
10045e10050; (b) Chen, R.; Bronger, R. P. J.; Kamer, P. C. J.; van Leeu-
wen, P. W. N. M.; Reek, J. N. H. J. Am. Chem. Soc. 2004, 126, 14557e
14566; (c) Shimizu, K.; Koizumi, S.; Hatamachi, T.; Yoshida, H.; Komai,
S.; Kodama, T.; Kitayama, Y. J. Catal. 2004, 228, 141e151; (d) Chantha-
teyanonth, R.; Alper, H. J. Mol. Catal. A: Chem. 2003, 201, 23e31; (e)
Sommer, W. J.; Yu, K.; Sears, J. S.; Ji, Y.; Zheng, X.; Davis, R. J.; Sherrill,
C. D.; Jones, C. W.; Weck, M. Organometallics 2005, 24, 4351e4361; (f)
Bandini, M.; Luque, R.; Budarin, V.; Macquarrie, D. J. Tetrahedron 2005,
61, 9860e9868.
8. (a) Varma, R. S. Tetrahedron 2002, 58, 1235e1255; (b) Varma, R. S. Pure
Appl. Chem. 2001, 73, 193e198; (c) Varma, R. S. J. Heterocycl. Chem.
1999, 35, 1565e1571; (d) Varma, R. S.; Kik-Othmer On-line Encyclopedia
of Chemical Technology, 5th ed; 2004; Vol. 16, pp 538e594; (e) Polshet-
tiwar, V.; Hesemann, P.; Moreau, J. J. E. Tetrahedron 2007, 63, 6784e
6790; (f) Polshettiwar, V.; Hesemann, P.; Moreau, J. J. E. Tetrahedron
Lett. 2007, 48, 5363e5366.
4.6. Typical experimental procedure for Heck reaction
The aryl halide (1 mmol), alkene (1.2 mmol), triethylamine
(1.5 mmol), and 0.1 g of PdeNHC silica (V) (0.004 g of Pd)
were added to 1 mL DMF in a 10 mL crimp-sealed thick-walled
glass tube equipped with a pressure sensor and a magnetic stir-
rer. The reaction tube was then placed inside the cavity of a
microwave oven, operated at 120ꢂ5 ꢀC (temperature monitored
by a built-in infrared sensor), power 40e140 W and pressure
40e70 psi for 30 min. After completion of the reaction, the re-
action mixture was filtered and crude was subjected to column
chromatography to afford pure Heck product.
9. (a) Polshettiwar, V.; Varma, R. S. J. Org. Chem. 2007, 72, 7420e7422; (b)
Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2007, 48, 5649e5652; (c)
Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2007, 48, 7343e7346; (d)
Ju, Y.; Kumar, D.; Varma, R. S. J. Org. Chem. 2006, 71, 6697e6700; (e)
Ju, Y.; Varma, R. S. J. Org. Chem. 2006, 71, 135e141; (f) Ju, Y.; Varma,
R. S. Org. Lett. 2005, 7, 2409e2411; (g) Wei, W.; Keh, C. C. K.; Li, C.-J.;
Varma, R. S. Clean Tech. Environ. Policy 2005, 7, 62e69; (h) Kumar, D.;
Chandra Sekhar, K. V. G.; Dhillon, H.; Rao, V. S.; Varma, R. S. Green
Chem. 2004, 6, 156e157; (i) Yang, X.-F.; Wang, M.; Varma, R. S.; Li,
C.-J. Org. Lett. 2003, 5, 657e660; (j) Strauss, C. R.; Varma, R. S. Top.
Curr. Chem. 2006, 266, 199e231; (k) Polshettiwar, V.; Varma, R. S.
Pure App. Chem. 2008, 80, 777e790; (l) Polshettiwar, V.; Varma, R. S.
Curr. Opin. Drug Discov. Devel. 2007, 10, 723e737; (m) Polshettiwar,
V.; Varma, R. S. Acc. Chem. Res., in press.
4.7. Typical experimental procedure for Suzuki reaction
The aryl halide (1 mmol), boronic acid (1.2 mmol), K2CO3
(1.5 mmol), and 0.1 g of PdeNHC silica (V) (0.004 g of Pd)
were added to 1.5 mL DMF/H2O (1:2) in a 10 mL crimp-
sealed thick-walled glass tube equipped with a pressure sensor
and a magnetic stirrer and similar procedure as describe above
was followed at 100 ꢀC for 10 min.
Acknowledgements
10. (a) Frey, G. G.; Schutz, J.; Herdtweck, E.; Herrmann, W. A. Organometal-
lics 2005, 24, 4416e4426; (b) Canal, J. P.; Ramnial, T.; Dickie, D. A.;
Clyburne, J. A. C. Chem. Commun. 2006, 1809e1818; (c) Peris, E.; Crab-
tree, R. H. Coord. Chem. Rev. 2004, 248, 2239e2246; (d) Kantchev,
E. A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46,
2768e2813; (e) O’Brien, C. J.; Kantchev, E. A. B.; Hadei, N.; Valente, C.;
V.P. thanks Prof. J.J.E. Moreau, ENSC, Montpellier, France
for introducing him to this interesting field of silica-materials.
He is currently supported by the Postgraduate Research Pro-
gram at the National Risk Management Research Laboratory
administered by the Oak Ridge Institute for Science and