2028
M. V. Perkins et al. / Tetrahedron Letters 47 (2006) 2025–2028
4. All new compounds gave spectroscopic data in agreement
with the assigned structures. Compound 13 had 1H NMR
(CDCl3, 300 MHz): 4.86 (2H, m), 4.13 (1H, d,
(20), 108 (67), 137 (23), 180 (100), 235 (12), 263 (6), 306
+
(19); HRMS (EI) calcd for C19H30O3 (M+) 306.2189,
d
found 306.2194.
J = 10 Hz), 3.66 (1H, dd, J = 2.1, 9.6 Hz), 1.87 (1H,
qqd, J = 6.8, 6.8, 2 Hz), 1.75 (3H, dd, J = 1, 1 Hz), 1.66–
1.81 (1H, m), 1.04 (9H, s), 1.02 (9H, s), 1.02 (3H, d,
J = 6.6 Hz), 0.86 (3H, d, J = 6.9 Hz), 0.63 (3H, d,
J = 6.6 Hz). 13C NMR (CDCl3, 75.5 MHz): d 145.8,
113.8, 85.6, 82.7, 37.8, 30.2, 27.8, 27.3, 23.1, 20.3, 20.2,
16.5, 13.7, 12.6. MS (EI) m/z 57 (7), 75 (22), 113 (10), 155
(28), 213 (6), 255 (100); HRMS (EI) calcd for C18H36O2Si
312.2479, found 312.2484. Compound 15 had 1H NMR
(CDCl3, 300 MHz): d 9.83 (1H, d, J = 3.4 Hz), 3.91 (1H,
dd, J = 10, 2 Hz), 3.62 (1H, dd, J = 9.6, 2.2 Hz), 2.61 (1H,
qdd, J = 6.8, 3.0, 3.0 Hz), 1.97–1.76 (2H, m), 1.28 (3H, d,
J = 7 Hz), 1.02 (9H, s), 1.00 (3H, d, J = 6.6 Hz), 0.96 (9H,
s), 0.83 (3H, d, J = 7.8 Hz), 0.79 (3H, d, J = 8 Hz); 13C
NMR (CDCl3, 75.5 MHz): d 205.6, 82.9, 82.3, 49.2, 39.1,
30.0, 27.8, 27.1, 23.2, 20.2, 20.2, 13.7, 12.1, 11.8. Com-
5. In agreement with Rychnovsky, S. D.; Rogers, B.; Yang,
G. J. Org. Chem. 1993, 58, 3511. Compound 12 was found
to have acetonide methyl 13C NMR signals at d = 19.6
and 30.1 ppm.
6. (a) Trost, B. M.; Caldwell, C. G. Tetrahedron Lett. 1981,
22, 4999; (b) Corey, E. J.; Hopkins, P. B. Tetrahedron Lett.
1982, 23, 4871; (c) Trost, B. M.; Caldwell, C. G.;
Murayama, E.; Heissler, D. J. Org. Chem. 1983, 48,
3252.
7. Aldehyde 15 was rather unstable and partly decomposed
upon chromatography and storage. The best results were
obtained when freshly prepared aldehyde was used in the
subsequent reaction.
8. (a) Evans, D. A.; Clark, J. S.; Metternich, R.; Novak, V.
J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, 112, 866; (b)
´
Evans, D. A.; Urpı, F.; Somers, T. C.; Clark, J. S.;
1
pound 19 had H NMR (CDCl3, 200 MHz): d 4.21 (1H,
Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215; (c)
Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J.
Am. Chem. Soc. 1991, 113, 1047.
dd, J = 2, 9 Hz), 3.73 (1H, dd, J = 2.8, 9.8 Hz), 3.52 (1H,
dd, J = 2.3, 10.1 Hz), 3.47 (1H, dd, J = 2.8, 8.4 Hz), 2.95
(1H, dq, J = 2.9, 7.2 Hz), 2.82 (1H, qd, J = 6.9, 2 Hz),
2.71–3.01 (2H, br s), 2.16 (1H, m), 1.56–2.03 (2H, m), 1.11
(3H, d, J = 7.2 Hz), 1.10 (3H, d, J = 6.8 Hz), 1.00 (9H, s),
0.97 (9H, s), 0.94–1.016 (9H, m), 0.84 (3H, d, J = 7.2 Hz),
0.81 (3H, d, J = 7 Hz), 0.76 (3H, d, J = 6.6 Hz); 13C NMR
(CDCl3, 50 MHz): d 220.7, 85.3, 84.2, 76.3, 70.5, 47.2,
45.9, 40.3, 37.6, 30.6, 30.0, 27.9, 27.3, 23.2, 20.3, 20.3, 19.0,
18.97, 16.7, 13.8, 12.5, 9.7, 8.2. Compound 3 had 1H NMR
(CDCl3, 600 MHz): see Table 1. 13C NMR (CDCl3,
150 MHz): see Table 1. MS (EI) m/z 43 (100), 69 (39),
108 (47), 137 (17), 180 (72), 183 (67), 235 (9), 263 (7), 281
9. The aldol condensation between the aldehyde 15 and the
Ti(IV) enolate of the unprotected b-hydroxy ketone 17 by
the methodology reported by Luke, G. P.; Morris, J. J.
Org. Chem. 1995, 60, 3013, produced varied results. Thus
the preferred procedure used the protected ketone 18 as
described.
10. Crystallographic data (excluding structure factors) for the
structures 3 and 20 in this paper have been deposited with
the Cambridge Crystallographic Data Centre as supple-
mentary publication numbers CCDC 289593 and CCDC
289592, respectively. Copies of the data can be obtained,
free of charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [fax: +44(0) 1223 336033 or
e-mail: deposit@ccdc.cam.ac.uk].
+
(9), 306 (11); HRMS (ESI) calcd for C19H32NaO4
(M+Na+) 347.2193, found 347.2211. Compound 22 had
1H NMR (CDCl3, 600 MHz): see Table 1. 13C NMR
(CDCl3, 150 MHz): see Table 1. MS (EI) m/z 43 (29), 93
11. Roush, W. R. J. Org. Chem. 1991, 56, 4151.