Highly Unsaturated, Optically Inactive Carotenoid Phospholipids
FULL PAPER
starting geometry was first equilibrated at 300 K for 500 ps followed by
slowly cooling to 100 K. The final geometry was obtained by applying the
steepest descent technique for 1000 steps and finally by applying the con-
jugate gradient with a 0.001 kcalmolÀ1 ꢄÀ1 gradient. The AM1 (MOPAC
93, Fujitsu Limited, Pentium III, 700 MHz, Windows NT4.0) method
with a CI of the three highest occupied and the two lowest unoccupied
MOs was used to calculate the excitation energies and transition mo-
ments. The individual transition moments were superimposed on the indi-
vidual molecules within the aggregates. Applying the principle of dipole–
dipole interactions,[57] an energy matrix was constructed and diagonalized
as usual. In this way the eigenvalues and, thus, the excitation energies of
the aggregates and the corresponding oscillatory and rotatory strengths
were obtained.
Scopes, G. Galasko, A.K. Mallams, B. C. L. Weedon, J. Szabolcs, G.
Tꢆth, J. Chem. Soc. C 1969, 2527–2544.
[28] H. Nakashima, M. Fujiki, J. R. Koe, M. Motonaga, J. Am. Chem.
Soc. 2001, 123, 1963–1969.
[29] A. F. M. Kilbinger, A. P. H. J. Schenning, F. Goldoni, W. J. Feast,
E. W. Meijer, J. Am. Chem. Soc. 2000, 122, 1820–1821.
[30] A. de Meijere, A. F. Khlebnikov, R. K. Kostikov, S. I. Kozhuskhov,
P. R. Schreiner, A. Wittkopp, D. S. Yufit, Angew. Chem. 1999, 111,
3682–3685; Angew. Chem. Int. Ed. 1999, 38, 3474–3477.
[31] C. W. Thomas, Y. Tor, Chirality 1998, 10, 53–59.
[32] H. W. I. Peerlings, M. P. Struijk, E. W. Meijer, Chirality 1998, 10, 46–
52.
[33] G. Wulff, U. Zweering, Chem. Eur. J. 1999, 5, 1898–1904.
[34] “Cryptochiral” was erroneously introduced for enantiomers without
detectable EOA (K. Mislow, P. Bickart, Isr. J. Chem. 1977, 15, 1–6).
The relation “optical activity=chirality” was later corrected: chirali-
ty is independent of chemical and physical evidence (A. B. Buda, T.
Auf der Heyde, K. Mislow, Angew. Chem. 1992, 104, 1012–1031;
Angew. Chem. Int. Ed. 1992, 31, 989–1007). The phenomenon of op-
tical activity cannot be limited to transmission measurements of the
ground state in the generally accessible EOA range. Optical activity
appears also at longer or shorter wavelengths in emission, disper-
sion, and transition spectra. de Meijere noticed in a footnote on
“cryptochirality” that racemates and meso compounds could be
termed cryptochiral,[30] but even methane would be cryptochiral:
P. W. Atkins, J.A. N. F. Gomes, Chem. Phys. Lett. 1976, 39, 519–520.
The term “cryptoactive” was proposed in 1965 by Schlenk, in recog-
nition that optical activity can be hidden behind the shortfall of in-
struments or measuring techniques.[5]
Acknowledgements
We thank H. Ernst (BASF AG, Ludwigshafen) and S. Servi (Politecnico
di Milano) for a generous gift of C30-ester and (R)-glycerophosphocho-
line, respectively, and T. B. Melø and K. R. Naqvi (Department of Phys-
ics, NTNU) for carrying out the flash-photolysis experiments. Financial
support from the European Community (QLK2-CT-2002–90436) is ac-
knowledged.
[1] W. Guyer, K. Koch, Chem. Phys. Lipids 1983, 33, 313–322.
[2] E. M. Arnett, J. M. Gold, J. Am. Chem. Soc. 1982, 104, 636–639.
[3] D. Andelman, J. Am. Chem. Soc. 1989, 111, 6536–6544.
[4] N. Nandi, J. Phys. Chem. A 2003, 107, 4588–4591.
[5] W. Schlenk, J. Am. Oil Chem. Soc. 1965, 42, 945–957.
[6] J. Cason, R. Davis, M. H. Sheehan, J. Org. Chem. 1971, 36, 2621–
2625.
[35] J.K. OꢇLane, Chem. Rev. 1980, 80, 41–61.
[36] E. Lꢀddecke, A. Auweter, L. Schweikert (BASF AG), EP 930022,
1998.
[37] D. Horn, J. Rieger, Angew. Chem. 2001, 113, 4460–4492; Angew.
Chem. Int. Ed. 2001, 40, 4331–4361.
[7] B. Schmitz, H. Egge, Chem. Phys. Lipids 1984, 43, 139–151.
[8] D. V. Kuklev, W. L. Smith, Chem. Phys. Lipids 2004, 130, 145–158.
[9] X. Song, C. Geiger, I. Furman, D. G. Whitten, J. Am. Chem. Soc.
1994, 116, 4103–4104.
[10] X. Song, J. Perlstein, D. G. Whitten, J. Am. Chem. Soc. 1997, 119,
9144–9159.
[11] H. C. Geiger, J. Perlstein, R. J. Lachicotte, K. Wyrozebski, D. G.
Whitten, Langmuir 1999, 15, 5606–5616.
[12] X. Song, J. Perlstein, D. G. Whitten, J. Phys. Chem. A 1998, 102,
5540–5450.
[38] Sybyl 6.6 program, Tripos Inc., St. Luis, MO, USA.
[39] H. J. Nolte, V. Buss, Tetrahedron 1975, 31, 719–723.
[40] P. Dauber-Osguthhorpe, V.A. Roberts, D. J. Osguthorpe, J. Wolff,
M. Genest, A. T. Hagler, Proteins: Structure, Function, Genetics
1988, 4, 31–47.
[41] A. T. Hagler, S. Lifson, J. Am. Chem. Soc. 1974, 96, 5327–5335.
[42] R. J. Maple, U. Dinur, A. T. Hagler, Proc. Natl. Acad. Sci. USA
1988, 85, 5350–5354.
[43] Discover 2.9.7, Biosym Technologies, Inc./Molecular Simulations
(MSI), Inc., San Diego, USA.
[13] B. J. Foss, S. Nalum Naess, H. R. Sliwka, V. Partali, Angew. Chem.
2003, 115, 5395–5398; Angew. Chem. Int. Ed. 2003, 42, 5237–5240.
[14] B. J. Foss, H. R. Sliwka, V. Partali, S. Nalum Naess, A. Elgsæter,
T. B. Melø, K. R. Naqvi, Chem. Phys. Lipids 2005, 134, 85–96.
[15] V. Partali, L. Kvittingen, H.-R. Sliwka, T. Anthonsen, Angew. Chem.
1996, 108, 342–344; Angew. Chem. Int. Ed. 1996, 35, 329–330.
[16] E. Larsen, J. Abendroth, V. Partali, B. Schulz, H.-R. Sliwka, E. G. K.
Quartey, Chem. Eur. J. 1998, 4, 113–117.
[44] The absorption maxima of higher carotenoid associations converge
to a constant value. Whereas the absorption of small oligomers is
significantly different, lmax of oligomers consisting of 8, 10, or 12
monomers are only separated by a few nanometers. Our conclusion
that the primary unit approximates an octamer means that the pres-
ence of a heptamer or hexamer is excluded, but possibly decamers
or dodecamers may be present (B. Mayer, H.-D. Martin, unpublish-
ed results).
[45] H. Chen, K. Y. Law, J. Perlstein, D. G. White, J. Am. Chem. Soc.
1995, 117, 7257–7258.
[46] A. Chowdhury, S. Wachsmann-Hogiu, P. R. Bangal, I. Raheem, L.A.
Peteanu, J. Phys. Chem. B 2001, 105, 12196–11201.
[47] J.A. Butcher, G. W. Lamb, J. Am. Chem. Soc. 1984, 106, 1217–1220.
[48] m. Simonyi, Z. Bikadi, F. Zsila, J. Deli, Chirality 2003, 15, 680–698.
[49] N. Berova, D. Gargiulo, F. Derguini, K. Nakanishi, N. Harada, J.
Am. Chem. Soc. 1993, 115, 4769–4775.
[50] M. S. Spector, A. Singh, P. B. Messersmith, J. M. Schnur, Nano Lett.
2001, 1, 375–378.
[51] H. Auweter, J. Benade, H. Bettermann, S. Beutner, C. Kçpsel, E.
Lꢀddecke, H.-D. Martin, B. Mayer, Proceed. Pigments in Food Tech-
nology (Eds.: M. I. M. Mosquera, M. J. Galan, D. H. Mendez), Dep.
Legal (SE-646–99), Sevilla 1999, pp. 197–201, ISBN 84–699–0185–0.
[52] Melittin is a 26-amino acid peptide commonly used as a cell-lyzing
agent: C. E. Dempsey, Biochim. Biophys. Acta 1990, 1031, 143–161.
[17] M. Tomoi, K. Inomata, H. Kakiuchi, S. Tokuyama, Synt. Commun.
1989, 19, 907–915.
[18] Phosphatidylcholine does not form aggregates in MeOH: I. W. Kell-
away, L. Saunders, Biochim. Biophys. Acta 1970, 210, 185–186.
[19] K. Noack, A. J. Thomson, Helv. Chim. Acta 1979, 62, 1902–1921.
[20] H.-R. Sliwka, Helv. Chim. Acta 1999, 82, 161–169.
[21] S. Gronowitz, B. Herslçf, R. Ohlson, B. Tçregꢅrd, Chem. Phys.
Lipids 1975, 14, 174–188.
[22] P. Walde, E. Blçchiger, Langmuir 1997, 13, 1668–1671.
[23] P. Walde, E. Blçchiger, K. Morigaki, Langmuir 1999, 15, 2346–2350.
[24] L. M. Colombo, C. Nastruzzi, P. L. Luisi, R. M. Thomas, Chirality
1991, 3, 495–4502.
[25] P. Michelsen, S. Gronowitz, B. ꢄkesson, B. Herslçf, Chem. Phys.
Lipids 1983, 32, 137–143.
[26] N. B. Smith, A. Kuksis, Can. J. Biochem. 1978. 56, 1149–1153.
[27] ORD measurements of carotenoids are performed in 0.1% solutions
with path-lengths of 1 mm: L. Bartlett, W. Klyne, W. P. Mose, P. M.
Chem. Eur. J. 2005, 11, 4103 – 4108
ꢂ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4107