8856 J. Phys. Chem. A, Vol. 113, No. 31, 2009
Hirakawa et al.
Shibata, Y.; Yoshida, N.; Osuka, A.; Kikuzawa, T.; Okada, T. J. Phys.
Chem. A 2002, 106, 12191. (d) Mataga, N.; Taniguchi, S.; Chosrowjan,
H.; Osuka, A.; Yoshida, N. Chem. Phys. 2003, 295, 215. (e) Mataga, N.;
Taniguchi, S.; Chosrowjan, H.; Osuka, A.; Kurotobi, K. Chem. Phys. Lett.
2005, 403, 163.
(14) (a) Fujitsuka, M.; Cho, D. W.; Shiragami, T.; Yasuda, M.; Majima,
T. J. Phys. Chem. B 2006, 110, 9368. (b) Fujitsuka, M.; Cho, D. W.; Tojo,
S.; Inoue, A.; Shiragami, T.; Yasuda, M.; Majima, T. J. Phys. Chem. A
2007, 111, 10574.
(15) Hirakawa, K.; Kawanishi, S.; Hirano, T.; Segawa, H. J. Photochem.
Photobiol. B: Biol. 2007, 87, 209.
(16) Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991.
(17) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour,
J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476.
(18) Buchler, J. W. Static Coordination Chemistry of Metalloporphyrins.
Porphyrins and Metalloporphyrins; Smith, K. M. , Ed.; Elsevier Scientific
Publishing Company: New York, 1975; Chapter 5.
(19) Spellane, P. J.; Gouterman, M.; Antipas, A.; Kim, S.; Liu, Y. C.
Inorg. Chem. 1980, 19, 386.
(20) Hirakawa, K.; Segawa, H. J. Photochem. Photobiol. A Chem. 1999,
123, 67.
(21) The reduction potential of pyrene was estimated from the oxidation
potential (1.44 V vs SCE) and the 0-0 band of absorption maximum (340
nm).
(22) Weller, A. Z. Phys. Chem. Neue Folge 1982, 133, 93.
(23) The CT state energy in solvent x (ECT)x was calculated from the
following equation:
for ZnP-Py and 0.18-0.67 eV for ZnFP-Py), indicating that
CR to S0 is a highly exothermic process. Therefore, CR to S1
becomes the predominant process.
In summary, the present study has shown that the S2 fluo-
rescence of porphyrin is quenched through rapid ET from the
pyrenyl group directly connected at the meso position, whereas
the S1 fluorescence cannot be quenched. The CT state relaxes
to the S1 state through rapid CR with a high quantum yield.
The ET from the electron donor to the porphyrin S2 can occur,
suggesting that the photooxidation of various molecules by using
porphyrin S2 state, which has higher oxidative ability than the
S1, is possible.
Acknowledgment. This work was supported by grants from
the Ministry of Education, Science and Culture of the Japanese
Government and from the Japan Science and Technology
Corporation.
Supporting Information Available: The transient absorp-
tion spectra of ZnP-Py. This material is available free of charge
e2
1
1
1
1
e2
εxa
References and Notes
+
(ECT)x ) (E1/2 - E1/2-) +
+
-
-
(
)(
)
2 rpor rpy εx εm
(1) (a) Wasielewski, M. R. Distance Dependencies of Electron Transfer
Reactions. Photoinduced Electron Transfer; Fox, M. A., Chanon, M. , Eds.;
Elsevier: Amsterdam, The Netherlands, 1988; Chapter 1.4. (b) Wasielewski,
M. R. Chem. ReV. 1992, 92, 435.
(2) Kurreck, H.; Huber, M. Angew. Chem., Int. Ed. Engl. 1995, 34,
849.
where E1/2+, E1/2-, e, εx, and εm are half-wave one-electron oxidation and
reduction potentials in solvent m, the electronic charge, and the static
dielectric constants of solvent x and m, respectively. The rpor (6.2 Å) and
the rpy (4.0 Å) are the effective ionic radius of porphyrin and pyrene,
respectively. These values were obtained by the ab initio MO calculation
at the Hartree-Fock 6-31G* level. Distance “a” is the center-to-center
distance between the porphyrin and the pyrene moieties (7.7 Å). The
following values were used as static dielectric constants: 36.0 (acetonitrile),
25.2 (benzonitrile), 9.10 (dichloromethane), 2.38 (toluene), and 1.88
(hexane).
(3) Piotrowiak, P. Chem. Soc. ReV. 1999, 28, 143.
(4) Bajema, R.; Gouterman, M. J. Mol. Spectrosc. 1971, 39, 421.
(5) Martarano, L. A.; Wong, C. P.; Horrocks, W. D., Jr.; Goncalves,
A. M. P. J. Phys. Chem. 1976, 80, 2389.
(6) (a) Tsvirko, M. P.; Stelmakh, G. F.; Pyatosin, V. E.; Solovyov,
K. N.; Kachura, T. F. Chem. Phys. Lett. 1980, 73, 80. (b) Stelmakh, G. F.;
Tsvirko, M. P. Opt. Spectrosc. 1983, 55, 518. (c) Aaviksoo, J.; Freiberg,
A.; Savikhin, S.; Stelmakh, G. F.; Tsvirko, M. P. Chem. Phys. Lett. 1984,
111, 275.
(7) (a) Tobita, S.; Kaizu, Y.; Kobayashi, H.; Tanaka, I. J. Chem. Phys.
1984, 81, 2962. (b) Kurabayashi, Y.; Kikuchi, K.; Kokubun, H.; Kaizu,
Y.; Kobayashi, H. J. Phys. Chem. 1984, 88, 1308. (c) Ohno, O.; Kaizu, Y.;
Kobayashi, H. J. Chem. Phys. 1985, 82, 1779. (d) Kaizu, Y.; Asano, M.;
Kobayashi, H. J. Phys. Chem. 1986, 90, 3906. (e) Kaizu, Y.; Maekawa,
H.; Kobayashi, H. J. Phys. Chem. 1986, 90, 4234.
(24) Fujii, H. Chem. Lett. 1994, 1491.
(25) Strachan, J. P.; Gouterman, S.; Seth, J.; Kalsbeck, W. A.; Lindsey,
J. S.; Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1997, 119, 11191.
(26) Yang, S. I.; Seth, J.; Balasubramanian, T.; Kim, D.; Lindsey, J. S.;
Holten, D.; Bocian, F. J. Am. Chem. Soc. 1999, 121, 4008.
(27) Asahi, T.; Mataga, N. J. Phys. Chem. 1991, 95, 1956.
(28) Hirata, Y.; Saito, T.; Mataga, N. J. Phys. Chem. 1987, 91, 3119.
(29) The kf was roughly estimated to be 2.5 × 108 s-1 from the
fluorescence quantum yield (Φ0S2-S2) and the lifetime (τ0) of S2 state of
zinc tetraphenylporphyrin derivatives in acetonitrile by the following
equation:
(8) Fujitsuka, M.; Cho, D. W.; Solladie´, N.; Troiani, V.; Qiu, H.;
Majima, T. J. Photochem. Photobiol. A: Chem. 2007, 188, 346.
(9) Chosrowjan, H.; Taniguchi, S.; Okada, T.; Takagi, S.; Arai, T.;
Tokumaru, K. Chem, Phys. Lett. 1995, 242, 644.
(10) Gurzadyan, G. G.; Tran-Thi, T. H.; Gustavsson, T. J. Chem. Phys.
1998, 108, 385.
(11) Harriman, A.; Hisseler, M.; Trompette, O.; Ziessel, R. J. Am. Chem.
Soc. 1999, 121, 2516.
Φ0
S2-S2
kf )
τ0
(12) LeGourrie´rec, D.; Andersson, M.; Davidsson, J.; Mukhtar, E.; Sun,
L.; Hammarstro¨m, L. J. Phys. Chem. A 1999, 103, 557.
(13) (a) Mataga, N.; Shibata, Y.; Chosrowjan, H.; Yoshida, N.; Osuka,
A. J. Phys. Chem. B 2000, 104, 4001. (b) Mataga, N.; Chosrowjan, H.;
Shibata, Y.; Yoshida, N.; Osuka, A.; Kikuzawa, T.; Okada, T. J. Am. Chem.
Soc. 2001, 123, 12422. (c) Mataga, N.; Chosrowjan, H.; Taniguchi, S.;
For the calculation, the values for Φ0
of ZnP and τ0 of zinc
S2-S2
tetraphenylporphyrin (τ0 ) 3.5 ps)9 were used. The kf was assumed to be
the constant in all solvents for the calculation of the kET
.
JP903743W