JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
16 X. Wu, L. Su, G. Chen, M. Jiang, Macromolecules 2015, 48,
3705–3712.
PLLA6.4k forms aggregates that efficiently represent D-man-
nose residues.
17 L. Su, C. Wang, F. Polzer, Y. Lu, G. Chen, M. Jiang, ACS
Macro Lett. 2014, 3, 534–539.
CONCLUSIONS
18 J. Lu, C. Fu, S. Wang, L. Tao, L. Yan, D. M. Haddleton, G.
Chen, Y. Wei, Macromolecules 2014, 47, 4676–4683.
The block glycopolymer, PManEMA-b-PLLA, was synthesized
by Cu(I)-catalyzed 1,3-dipolar cycloaddition between PLLA
bearing an ethynyl group and PManEMA bearing an azide
group at the initiating end. The block architecture was con-
firmed by SEC and 1H NMR spectroscopy. The water-
solubility of the block glycopolymer depends on the balance
of the two segments. The aggregate formation of the block
glycopolymer, PManEMA16k-b-PLLA6.4k, was examined by 1H
NMR spectroscopy using selective solvents, fluorometry
using pyrene as a hydrophobic probe, and DLS measurement.
The block glycopolymer forms a complicated aggregate in
water at concentrations above 21 mgÁmL21. The aggregates
present D-mannose units on their outer surfaces, and can
interact with the lectin, concanavalin A.
19 V. Ladmiral, M. Semsarilar, I. Canton, S. P. Armes, J. Am.
Chem. Soc. 2013, 135, 13574–13581.
~
ꢀ
ꢀ
ꢀ
20 A. Munoz-Bonilla, O. Leon, V. Bordege, M. Sanchez-Chaves,
ꢀ
ꢀ
M. Frenandez-Garcıa, J. Polym. Sci. Part A: Polym. Chem. 2013,
51, 1337–1347.
21 L. Albertin, M. Stenzel, C. Barner-Kowollik, L. J. R. Foster, T.
P. Davis, Macromolecules 2004, 37, 7530–7537.
~
ꢀ
22 A. Munoz-Bonilla, O. Leon, M. L. Cerrada, J. Polym. Sci. Part
a: Polym. Chem. 2012, 50, 2565–2577.
23 K. Ohno, Y. Tsuji, T. Fukuda, J. Polym. Sci. Part A: Polym.
Chem. 1998, 36, 2473–2481.
24 E. H. H. Wong, M. M. Khin, V. Ravikumar, Z. Si, S. A. Rice,
M. B. Chan-Park, Biomacromolecules 2016, 17, 1170–1178.
25 K. Sun, M. Xu, K. Zhou, H. Nie, J. Quan, L. Zhu, Mater. Sci.
Eng. C 2016, 68, 172–176.
26 W. Y. Zhang, G. S. Chen, Chinese Chem. Lett. 2015, 26, 847–
850.
ACKNOWLEDGMENTS
27 S. Pearson, H. Lu, M. H. Stenzel, Macromolecules 2015, 48,
1065–1076.
The authors wish to thank Prof. Hidenori Okuzaki, University of
Yamanshi for support in DLS measurements. This work was
supported by JSPS KAKENHI Grant Numbers 21550156 and
25410126.
28 G. Pasparakis, C. Alexander, Angew. Chem. Int. Ed. 2008,
47, 4847–4850.
29 Z. P. Tolstyka, H. Phillips, M. Cortez, Y. Wu, N. Ingle, J. B.
Bell, P. B. Hackett, T. M. Reineke, ACS Biomater. Sci. Eng.
2016, 2, 43–55.
REFERENCES AND NOTES
30 S. Quan, P. Kumar, R. Narain, ACS Biomater. Sci. Eng. 2016,
2, 853–859.
1 S. Biswas, P. Kumari, P. M. Lakhani, B. Ghosh, Eur. J. Pharm.
Sci. 2016, 83, 184–202.
31 B. Thapa, P. Kumar, H. Zeng, R. Narain, Biomacromolecules
2015, 16, 3008–3020.
2 K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Delivery Rev.
2012, 64, 37–48.
32 M. Obata, T. Kobori, S. Hirohara, M. Tanihara, Polym.
Chem. 2015, 6, 1793–1804.
3 U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Nanomedicine:
NBM. 2010, 6, 714–729.
33 C. K. Adokoh, S. Quan, M. Hitt, J. Darkwa, P. Kumar, R.
Narain, Biomacromolecules 2014, 15, 3802–3810.
4 A. Kolate, D. Baradia, S. Patil, I. Vhora, G. Kore, A. Misra, J.
Control. Release 2014, 192, 67–81.
34 D. Sprouse, T. M. Reineke, Biomacromolecules 2014, 15,
2616–2628.
5 K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew.
Chem. Int. Ed. 2010, 49, 6288–6308.
35 Y. Wu, M. Wang, D. Sprouse, A. E. Smith, T. M. Reineke,
Biomacromolecules 2014, 15, 1716–1726.
6 V. Ladmiral, E. Melia, D. M. Haddleton, Eur. Polym. J. 2004,
40, 431–449.
36 M. C. Munisso, S. Obika, T. Yamaoka, Carbohydr. Polym.
2014, 114, 288–296.
7 Y. Miura, J. Polym. Sci., Part A: Polym. Chem. 2007, 45,
37 H. Li, M. A. Cortez, H. R. Phillips, Y. Wu, T. M. Reineke, ACS
Macro Lett. 2013, 2, 230–235.
5031–5036.
8 S. Slavin, J. Burns, D. M. Haddleton, C. R. Becer, Eur. Polym.
J. 2011, 47, 435–446.
€ €
38 H. Arslan, O. Zırtıl, V. Butun. Eur. Polym. J. 2013, 49, 4118–4129.
39 A. E. Smith, A. Sizovs, G. Grandinetti, L. Xue, T. M. Reineke,
Biomacromolecules 2011, 12, 3015–3022.
9 Y. Miura, Y. Hoshino, H. Seto, Chem. Rev. 2016, 116, 1673–
1692.
40 L. Liu, J. Zhang, W. Lv, Y. Luo, X. Wang, J. Polym. Sci. Part
A: Polym. Chem. 2010, 48, 3350–3361.
10 Y. Zhang, J. W. Chan, A. Moretti, K. E. Uhrich, J. Control.
Release 2015, 219, 355–368.
41 A. B. Lowe, R. Wang, Polymer 2007, 48, 2221–2230.
11 K. Jain, P. Kesharwani, U. Gupta, N. K. Jain, Biomaterials
2012, 33, 4166–4186. 51
€
€
42 Z. Ozyurek, H. Komber, S. Gramm, D. Schmaljohann, A. H. E.
€
Muller, B. Voit, Macromol. Chem. Phys. 2007, 208, 1035–1049.
12 J. An, X. Dai, Z. Wu, Y. Zhao, Z. Lu, Q. Guo, X. Zhang, Bio-
macromolecules 2015, 16, 2444–2454.
43 J. Bernard, X. Hao, T. P. Davis, C. Barner-Kowollik, M. H.
Stenzel, Biomacromolecules 2006, 7, 232–238.
13 W. T. Liau, C. Bonduelle, M. Brochet, S. Lecommandoux, A.
M. Kasko, Biomacromolecules 2015, 16, 284–294.
44 Q. Guo, T. Zhang, J. An, Z. Wu, Y. Zhao, X. Dai, X. Zhang,
C. Li, Biomacromolecules 2015, 16, 3345–3356.
~
ꢀ
14 A. Munoz-Bonilla, O. Leon, M. L. Cerrada, Eur. Polym. J.
2015, 62, 167–178.
45 L. Albertin, M. H. Stenzel, C. Barner-Kowollik, L. J. R. Foster,
T. P. Davis, Macromolecules 2005, 38, 9075–9084.
15 S. Kumar, B. Maiti, P. De, Langmuir 2015, 31, 9422–9431.
8
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2016, 00, 000–000