Journal of the American Chemical Society
Communication
REFERENCES
■
(1) Nam, W. Acc. Chem. Res. 2007, 40, 465 and references therein.
(2) (a) Ortiz de Montellano, P. R. Cytochrome P450: Structure,
Mechanism, and Biochemistry; Kluwer/Plenum: New York, 2005.
(b) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Chem.
Rev. 2005, 105, 2279. (c) Ortiz de Montellano, P. R. Chem. Rev. 2010,
110, 932. (d) Rittle, J.; Green, M. T. Science 2010, 330, 933.
(3) (a) Groves, J. T.; McClusky, G. A. J. Am. Chem. Soc. 1976, 98, 859.
(b) Groves, J. T.; Van Der Puy, M. J. Am. Chem. Soc. 1976, 98, 5290.
(c) Groves, J. T. J. Chem. Educ. 1985, 62, 928. (d) Groves, J. T. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 3569.
(4) (a) Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser, S. P.;
Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977. (b) Guallar, V.; Baik, M.-H.;
Lippard, S. J.; Friesner, R. A. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6998.
(c) Kamachi, T.; Yoshizawa, K. J. Am. Chem. Soc. 2003, 125, 4652.
(5) (a) Krebs, C.; Galonic Fujimori, D.; Walsh, C. T.; Bollinger, J. M.,
́
Jr. Acc. Chem. Res. 2007, 40, 484. (b) Que, L., Jr. Acc. Chem. Res. 2007, 40,
493. (c) Nam, W. Acc. Chem. Res. 2007, 40, 522.
Figure 3. Valence-electron orbitals involved in electron shifts during the
rebound step for (top) heme (FeIVOH) and (bottom) non-heme
(FeIIIOH) intermediates. Blue arrows indicate the energetically
preferred reactions, while red arrows generally lead to higher barriers.
Green spin arrows indicate electrons nascent from the substrate. See the
text for a detailed discussion.
(6) (a) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.;
Stubna, A.; Kim, J.; Munck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc.
̈
2004, 126, 472. (b) Seo, M. S.; Kim, N. H.; Cho, K.-B.; So, J. E.; Park, S.
́
K.; Clemancey, M.; Garcia-Serres, R.; Latour, J.-M.; Shaik, S.; Nam, W.
Chem. Sci. 2011, 2, 1039.
(7) (a) Hirao, H.; Kumar, D.; Que, L., Jr.; Shaik, S. J. Am. Chem. Soc.
2006, 128, 8590. (b) de Visser, S. P. J. Am. Chem. Soc. 2006, 128, 9813.
(c) Comba, P.; Maurer, M.; Vadivelu, P. J. Phys. Chem. A 2008, 112,
13028. (d) Hirao, H.; Que, L., Jr.; Nam, W.; Shaik, S. Chem.Eur. J.
2008, 14, 1740. (e) Geng, C.; Ye, S.; Neese, F. Angew. Chem., Int. Ed.
2010, 49, 5717.
(8) (a) Broun, P.; Shanklin, J.; Whittle, E.; Somerville, C. Science 1998,
282, 1315. (b) Whittle, E. J.; Tremblay, A. E.; Buist, P. H.; Shanklin, J.
Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14738. (c) Mukherjee, A.;
non-heme case, the Fe−O−C angle is very roughly 180° as a
7a
result of the selection rules of TSC−H
,
but the substrate must
relocate to assume a more bent angle in order to interact with the
πy*z orbital in the second electron movement step (this relocation
is not necessary for the low-spin heme case). Hence, we suggest
that a difference in EER and steric effects are the two main factors
responsible for the difference between heme and non-heme
cases.
In conclusion, theoretical calculations have predicted that
dissociation of the substrate radicals formed by hydrogen
abstraction from alkane C−H bonds by non-heme FeIVO
complexes is more favorable than the oxygen rebound and
desaturation processes. This is in contrast to the case of heme
FeIVO, where the low-spin, reorientation-free, and EER-
independent reactions lead to a minimal rebound barrier. This
theoretical prediction has been verified by experimental results
obtained by analyzing the products formed in C−H bond
activation of various substrates by synthetic non-heme FeIVO
complexes. Thus, the general view that C−H bond activation by
high-valent metal−oxo species universally occurs via the
hydrogen abstraction/oxygen rebound mechanism should be
viewed with caution.
Martinho, M.; Bominaar, E. L.; Munck, E.; Que, L., Jr. Angew. Chem., Int.
̈
Ed. 2009, 48, 1780. (d) Bigi, M. A.; Reed, S. A.; White, M. C. Nat. Chem.
2011, 3, 216.
(9) (a) Usharani, D.; Janardanan, D.; Shaik, S. J. Am. Chem. Soc. 2011,
133, 176. (b) Janardanan, D.; Usharani, D.; Chen, H.; Shaik, S. J. Phys.
Chem. Lett. 2011, 2, 2610.
(10) Abbreviations: Me,HPytacn = 1-(2′-pyridylmethyl)-4,7-dimethyl-
1,4,7-triazacyclononane; Bn-TPEN = N-benzyl-N,N′,N′-tris(2-pyridyl-
methyl)ethane-1,2-diamine; N4Py = N,N-bis(2-pyridylmethyl)-N-
bis(2-pyridyl)methylamine.
(11) Company, A.; Prat, I.; Frisch, J. R.; Mas-Balleste,
́
R.; Guell, M.;
̈
Juhasz, G.; Ribas, X.; Munck, E.; Luis, J. M.; Que, L., Jr.; Costas, M.
́
̈
Chem.Eur. J. 2011, 17, 1622.
(12) Klinker, E. J. Ph.D. Thesis, University of Minnesota, Minneapolis,
MN, 2007.
(13) Wu, X.; Seo, M. S.; Davis, K. M.; Lee, Y.-M.; Chen, J.; Cho, K.-B.;
Pushkar, Y. N.; Nam, W. J. Am. Chem. Soc. 2011, 133, 20088.
(14) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(15) (a) Ho, J.; Klamt, A.; Coote, M. L. J. Phys. Chem. A 2010, 114,
13442. (b) Cho, K.-B.; Chen, H.; Janardanan, D.; de Visser, S. P.; Shaik,
S.; Nam, W. Chem. Commun. 2012, 48, 2189.
(16) Ye, S.; Neese, F. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 1228.
(17) Shaik, S.; Chen, H.; Janardanan, D. Nat. Chem. 2011, 3, 19.
(18) Cho, K.-B.; Kim, E. J.; Seo, M. S.; Shaik, S.; Nam, W. Chem.Eur.
J. 2012, 18, 10444.
ASSOCIATED CONTENT
* Supporting Information
Theoretical and experimental methods and additional data. This
material is available free of charge via the Internet at http://pubs.
■
S
AUTHOR INFORMATION
Corresponding Author
■
(19) Evans, D. F.; Jakubovic, D. A. J. Chem. Soc., Dalton Trans. 1988,
2927. The measured magnetic moment was 5.7μB, implying an S = 5/2
state.
Notes
(20) The reactions of 2 with DHA and CHD reached completion
within several seconds. In addition, the observed rate constant for the
reaction of 2 with EB was 2.2 × 10−3 s−1 (Figure S3).
(21) Cho, K.-B.; Shaik, S.; Nam, W. J. Phys. Chem. Lett. 2012, 3, 2851.
(22) Groves, J. T.; Nemo, T. E. J. Am. Chem. Soc. 1983, 105, 6243.
(23) Lai, W.; Chen, H.; Cohen, S.; Shaik, S. J. Phys. Chem. Lett. 2011, 2,
2229.
The authors declare no competing financial interest.
§K.-B.C. and X.W. contributed equally.
ACKNOWLEDGMENTS
■
The research at EWU was supported by NRF/MEST of Korea
through CRI, GRL (2010-00353), and WCU (R31-2008-000-
10010-0) (to W.N.). S.S. acknowledges Israel Science
Foundation Grant ISF 53/09 for financial support.
D
dx.doi.org/10.1021/ja308290r | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX