Angewandte
Chemie
3
0
3
0
.07 mm , orthorhombic, space group Pccn, a = 16.414(11), b =
Aoyagi, K. Biradha, M. Fujita, J. Am. Chem. Soc. 1999, 121,
7457 – 7458.
3
2.34(2), c = 37.30(2) ꢁ, V= 19800(21) ꢁ , Z = 4, R (I>2s(I)) =
.1532, wR(F ) = 0.4282, GOF = 1.091; intensity data were measured
at 93.1 K on a Rigaku RAXIS-RAPID Imaging Plate diffractometer
with graphite monochromated MoKa (l = 0.71075 ꢁ) radiation;
1
2
[7] a) M. Yoshizawa, M. Tamura, M. Fujita, J. Am. Chem. Soc. 2004,
126, 6846 – 6847; b) A. Scarso, L. Trembleau, J. Rebek, Jr.,
Angew. Chem. 2003, 115, 5657 – 5660; Angew. Chem. Int. Ed.
2003, 42, 5499 – 5502; c) J. M. C. A. Kerckhoffs, F. W. B. van
Leeuwen, A. L. Spek, K. Kooijman, M. Crego-Calama, D. N.
Reinhoudt, Angew. Chem. 2003, 115, 5895 – 5900; Angew. Chem.
Int. Ed. 2003, 42, 5717 – 5722; d) J. L. Atwood, A. Szumna,
Chem. Commun. 2003, 940 – 941; e) A. Ikeda, M. Yoshimura, H.
Udzu, C. Fukuhara, S. Shinkai, J. Am. Chem. Soc. 1999, 121,
4296 – 4297.
[8] a) D. Fiedler, R. G. Bergman, K. N. Raymond, Angew. Chem.
2004, 116, 6916 – 6919; Angew. Chem. Int. Ed. 2004, 43, 6748 –
6751; b) M. Yoshizawa, Y. Takeyama, T. Kusukawa, M. Fujita,
Angew. Chem. 2002, 114, 1403 – 1405; Angew. Chem. Int. Ed.
2002, 41, 1347 – 1349; c) J. Kang, J. Rebek, Jr., Nature 1997, 385,
o
a
structure solution was carried out with the program PATTY (P.
Beurskens, T. Admiraal, G. Beurskens, G. Bosman, W. P. de Gelder,
R. Israel, J. M. M. Smits, PATTY: The DIRDIF-94 Program System,
Technical Report of the Crystallography Laboratory, University of
Nijmegen, The Netherlands, 1994). Considerably large R1 and wR
values might be due to the missing of one of four anions and a poor
quality of the crystal used. CCDC-248984 contains the supplementary
crystallographic data for this paper. These data can be obtained free
of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Received: October 22, 2004
Published online: March 30, 2005
50 – 52; d) J. Kang, J. Santamaria, G. Hilmersson, J. Rebek, Jr.,
J. Am. Chem. Soc. 1998, 120, 7389 – 7390.
[
9] a) M. C. Jimꢂnez, C. Dietrich-Buchecker, J.-P. Sauvage, Angew.
Chem. 2000, 112, 3422 – 3425; Angew. Chem. Int. Ed. 2000, 39,
Keywords: cage compounds · host–guest systems ·
molecular recognition · self-assembly · silver
.
3
284 – 3287; b) M. C. Jimenez-Molero, C. Dietrich-Buchecker,
J.-P. Sauvage, Chem. Commun. 2003, 1613 – 1616.
10] S. Hiraoka, T. Yi, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2002,
24, 14510 – 14511.
11] a) S.-S. Sun, C. L. Stern, S.-B. T. Nguyen, J. T. Hupp, J. Am.
Chem. Soc. 2004, 126, 6314 – 6326; b) M. Barboiu, E. Petit, G.
Vaughan, Chem. Eur. J. 2004, 10, 2263 – 2270; c) C.-Y. Su, Y.-P.
Cai, C.-L. Chen, M. D. Smith, W. Kaim, H.-C. zur Loye, J. Am.
Chem. Soc. 2003, 125, 8595 – 8613; d) M. Barboiu, G. Vaughan,
R. Graff, J.-M. Lehn, J. Am. Chem. Soc. 2003, 125, 10257 –
[
[
1
[
1] a) F. Hof, S. L. Craig, C. Nuckolls, J. Rebek, Jr., Angew. Chem.
2002, 114, 1556 – 1578; Angew. Chem. Int. Ed. 2002, 41, 1488 –
1508; b) L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew.
Chem. 2001, 113, 2690 – 2692; Angew. Chem. Int. Ed. 2001, 40,
2382 – 2426; c) L. R. MacGillivray, J. L. Atwood, Angew. Chem.
1999, 111, 1080 – 1096; Angew. Chem. Int. Ed. 1999, 38, 1018 –
1033.
10265.
[
2] a) A. V. Davis, R. M. Yeh, K. N. Raymond, Proc. Natl. Acad. Sci.
USA 2002, 99, 4793 – 4796; b) M. Fujita, K. Umemoto, M.
Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, Chem.
Commun. 2001, 509 – 518; c) S. Leninger, B. Olenyuk, P. J.
Stang, Chem. Rev. 2000, 100, 853 – 907; d) G. F. Swiegers, T. J.
Malefetse, Chem. Rev. 2000, 100, 3483 – 3537.
3+
[
[
12] The possibility of a sandwich-shaped [Ag 1 ] structure is ruled
3
2
out because the coordination direction of pyridyl nitrogen atoms
of 1 does not meet the requirements for the formation of
3+
[
Ag 1 ] , as suggested by its molecular-modeling study.
3 2
4+
13] The changes in the chemical shift of H signal of the [Ag 1 ]
a
4 4
capsule complex should be affected by both the bonding nature
of the Ag N bonds and the deshielding effects of the p-tolyl
rings in the neighboring ligands. Upon encapsulation of 3 in the
[
3] a) J. L. Atwood, A. Szumna, J. Am. Chem. Soc. 2002, 124,
ꢀ
10646 – 10647; b) J. L. Atwood, L. J. Barbour, A. Jerga, Proc.
Natl. Acad. Sci. USA 2002, 99, 4837 – 4841; c) K. Umemoto, H.
Tsukui, T. Kusukawa, K. Biradha, M. Fujita, Angew. Chem. 2001,
4+
ꢀ
[
Ag 1 ] complex, the Ag N bonds are lengthened so as to
4 4
4+
maximize van der Waals interaction between the [Ag 1 ]
4
4
113, 2690 – 2692; Angew. Chem. Int. Ed. 2001, 40, 2620 – 2622;
capsule and 3. The movement of the four ligands away from
d) L. J. Prins, F. De Jong, P. Timmerman, D. N. Reinhoudt,
Nature 2000, 408, 181 – 184; e) N. Takeda, K. Umemoto, K.
Yamaguchi, M. Fujita, Nature 1999, 398, 794 – 796; f) B. Ole-
nyuk, J. A. Whiteford, A. Fechtenkotter, P. J. Stang, Nature 1999,
ꢀ
each other with increasing Ag N bond lengths of the
4+
[
3ꢁAg 1 ] should decrease the deshielding effects of the p-
4
4
tolyl rings.
14] The binding constant was determined by the H NMR integral
1
[
3
3
98, 796 – 799; g) L. R. MacGillivray, J. L. Atwood, Nature 1997,
89, 469 – 472;
4+
4+
ratios of the [3ꢁAg 1 ] and [Ag 1 ] , and the thermodynamic
4
4
4 4
parameters (DH and DS) were calculated from the DG values
obtained at temperatures ranging from 273 to 333 K by the least-
square method. Experimental data are shown in the Supporting
Information.
[
4] a) R. Pinalli, V. Cristini, V. Sottili, S. Geremia, M. Campagnolo,
A. Caneschi, E. Dalcanale, J. Am. Chem. Soc. 2004, 126, 6516 –
6
517; b) C. J. Kuehl, Y. K. Kryschenko, U. Radhakrishnan, S. R.
Seidel, S. D. Huang, P. J. Stang, Proc. Natl. Acad. Sci. USA 2002,
9, 4932 – 4936; c) A. Ikeda, H. Udzu, Z. Zhong, S. Shinkai, S.
Sakamoto, K. Yamaguchi, J. Am. Chem. Soc. 2001, 123, 3872 –
877; d) M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K.
[
[
[
15] Several halogenated methanes were also encapsulated in the
9
ꢀ1
Ag414 complex. Their binding constants K (m ) at 273 K are
2
2
7
.5 ꢀ 10 (CBr ), 1.0 ꢀ 10 (CBr Cl ), 14 (CFBr ), 18 (CBrCl ),
4 2 2 3 3
3
and 1.4 (CCl ).
4
Yamaguchi, K. Ogura, Nature 1995, 378, 469 – 471.
19
16] F NMR spectra of the Ag 1 capsule and Ag 1 cage complexes
4
4
6 4
[
5] a) Y. Yamanoi, Y. Sakamoto, T. Kusukawa, M. Fujita, S.
Sakamoto, K. Yamaguchi, J. Am. Chem. Soc. 2001, 123, 980 –
showed one set of signals similar to that of AgPF or AgOTf
which suggests that the counteranions should exist outside their
inner space.
6
9
81; b) R. H. Vreekamp, J. P. M. van Duynhoven, M. Hubert, W.
Verboom, D. N. Reinhoudt, Angew. Chem. 1996, 108, 1303 –
306; Angew. Chem. Int. Ed. Engl. 1996, 35, 1215 – 1218.
17] An excellent example is reported in reference [7c] for the
release of guest molecules in the hydrogen-bonded cage
triggered by the change of their components. However, the
reversible encapsulation/release process was not established by
this system.
1
[
6] a) D. T. Bong, T. D. Clark, J. R. Granja, M. R. Ghadiri, Angew.
Chem. 2001, 113, 1016 – 1041; Angew. Chem. Int. Ed. 2001, 40,
988 – 1011; b) M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E.
McRee, N. Khazanovich, Nature 1993, 366, 324 – 327; c) T.
Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, M.
Fujita, J. Am. Chem. Soc. 2004, 126, 10818 – 10819; d) M.
Angew. Chem. Int. Ed. 2005, 44, 2727 –2731
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2731