10.1002/anie.201801397
Angewandte Chemie International Edition
COMMUNICATION
=
=
C3 /C2 also agrees with the previously reported MTO catalyzed
by other zeolites.[1, 20] Furthermore, a previous syngas conversion
study combining a methanol synthesis catalyst (Pd/SiO2) and
MOR also showed favored formation of longer aliphatic
hydrocarbons (C3+) and aromatics.[21] Note that varying methanol
partial pressures (0.05 – 5.0 kPa), space velocities (0.03 – 5.27
gCH3OH/gzeolite·h) and reaction temperatures, methanol conversion
changes between 80-100% and the hydrocarbon product
distribution changes slightly but remains non-selective, with C2 no
more than 36%, no matter over MOR#2-py, MOR#14 or MOR#3
(Figure S8 and S9). It suggests that methanol can be convered to
hydrocarbons by MOR but non-selectively even though formation
of methanol from syngas is detected over metal oxides (Figure S5)
whereas ketene can be highly selectively converted to ethylene
over the 8MR sites. When both the 8MR and 12MR sites are
accessible (MOR#3), syngas is also converted preferably to C2
hydrocarbons with a similar distribution profile (Figure 4G) as
ketene conversion but a lower C2 selectivity (Figure 4H), whereas
methanol conversion (Figure 4I) resembles that by the 12MR sites
with C2 selectivity lower than 20% (Figure 4F). Furthermore,
hydrocarbon distribution is also very wide when feeding dimethyl
ether (DME) together with syngas to these three MOR zeolites,
which is dominated by C3+ and the highest C2 selectivity among
hydrocarbons is only 38% (Figure S10 and Table S2). These
results support that highly selective syngas-to-ethylene
conversion proceeds more likely via ketene as an intermediate
over the MOR 8MR sites rather than methanol or DME over the
8MR or 12MR sites.
Technol. 2016, 6, 2725-2734.
[2]
a) R. A. Dictor, A. T. Bell, J. Catal. 1986, 97, 121-136; b)
T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.-S. Nam,
K.-W. Jun, M.-J. Choi, G. Kishan, K.-W. Lee, Appl. Catal.
A Gen. 1999, 186, 201-213; c) H. M. Torres Galvis, J. H.
Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, K. P.
de Jong, Science 2012, 335, 835-838; d) G. Melaet, W.
T. Ralston, C. S. Li, S. Alayoglu, K. An, N. Musselwhite,
B. Kalkan, G. A. Somorjai, J. Am. Chem. Soc. 2014, 136,
2260-2263; e) L. Zhong, F. Yu, Y. An, Y. Zhao, Y. Sun, Z.
Li, T. Lin, Y. Lin, X. Qi, Y. Dai, L. Gu, J. Hu, S. Jin, Q.
Shen, H. Wang, Nature 2016, 538, 84-87; f) C. L. Xie, C.
Chen, Y. Yu, J. Su, Y. F. Li, G. A. Somorjai, P. D. Yang,
Nano Lett. 2017, 17, 3798-3802.
a) F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y.
Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He,
J. Yang, F. Qi, Q. Fu, X. Bao, Science 2016, 351, 1065-
1068; b) K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, Y.
Wang, Angew. Chem. Int. Ed. 2016, 55, 4725-4728.
C. D. Chang, J. N. Miale, R. F. Socha, J. Catal. 1984,
90, 84-87.
[3]
[4]
[5]
a) K. Fujimoto, H. Saima, H. O. Tominaga, J. Catal. 1985,
94, 16-23; b) C. Li, K. Fujimoto, Catal. Sci. Technol.
2015, 5, 4501-4510; c) Q. W. Zhang, X. H. Li, K. Asami,
S. Asaoka, K. Fujimoto, Fuel Process. Technol. 2004,
85, 1139-1150; d) Y. Chen, Y. Xu, D.-g. Cheng, Y. Chen,
F. Chen, X. Lu, Y. Huang, S. Ni, J. Chem. Technol.
Biotechnol. 2015, 90, 415-422.
[6]
[7]
H. Arakawa, Y. Kiyozumi, K. Suzuki, K. Takeuchi, T.
Matsuzaki, Y. Sugi, T. Fukushima, S. Matsushita, Chem.
Lett. 1986, 1341-1342.
Y. F. Zhu, X. L. Pan, F. Jiao, J. Li, J. H. Yang, M. Z. Ding,
Y. Han, Z. Liu, X. H. Bao, ACS Catal. 2017, 7, 2800-
2804.
K. P. de Jong, Science 2016, 351, 1030-1031.
C. M. Wang, Y. D. Wang, Z. K. Xie, Catal. Sci. Technol.
2016, 6, 6644-6649.
a) X. Chen, D. Deng, X. Pan, Y. Hu, X. Bao, Chem.
Commun. 2015, 51, 217-220; b) A. M. Hilmen, E.
Bergene, O. A. Lindvag, D. Schanke, S. Eri, A. Holmen,
Catal. Today 2001, 69, 227-232.
a) Z. Liu, C. Sun, G. Wang, Q. Wang, G. Cai, Fuel
Process. Technol. 2000, 62, 161-172; b) U. Olsbye, S.
Svelle, M. Bjorgen, P. Beato, T. V. Janssens, F. Joensen,
S. Bordiga, K. P. Lillerud, Angew. Chem. Int. Ed. 2012,
51, 5810-5831; c) D. Chen, K. Moljord, A. Holmen,
Micro.Meso.Mater. 2012, 164, 239-250.
a) K. J. Chao, H. C. Wu, L. J. Leu, Appl. Catal. A Gen.
1996, 143, 223-243; b) A. Chica, A. Corma, J. Catal.
1999, 187, 167-176; c) O. Bortnovsky, P. Sazama, B.
Wichterlova, Appl. Catal. A Gen. 2005, 287, 203-213.
N. Cherkasov, T. Vazhnova, D. B. Lukyanov, Vib.
Spectrosc. 2016, 83, 170-179.
a) M. Maache, A. Janin, J. C. Lavalley, E. Benazzi,
Zeolites 1995, 15, 507-516; b) J. Datka, B. Gil, A.
Kubacka, Zeolites 1996, 17, 428-433; c) A. Bhan, A. D.
Allian, G. J. Sunley, D. J. Law, E. Iglesia, J. Am. Chem.
Soc. 2007, 129, 4919-4924; d) V. A. Veefkind, M. L.
Smidt, J. A. Lercher, Appl. Catal. A Gen. 2000, 194, 319-
332.
The above results demonstrate that by combining partially
reduced ZnCrOx with the confined active sites of the MOR 8MR
side pockets, syngas conversion is steered along a new reaction
pathway via ketene as an intermediate leading to an extraordinary
ethylene selectivity as high as 73% at a CO conversion 26%. This
opens up a new avenue for development of syngas-to-ethylene
technology. Furthermore, it demonstrates the versatility of the
bifunctional OX-ZEO catalyst concept, which turns syngas
conversion into a tandem catalysis. Consequently, the product
selectivity can be controlled by shape selective zeolites. This
provides an effective strategy to tackle the selectivity challenge of
syngas chemistry, which has been under study for almost a
century.
[8]
[9]
[10]
[11]
Acknowledgements
[12]
This work was supported by the Ministry of Science and
Technology of China (No. 2016YFA0202803), the National
Natural Science Foundation of China (Grant No. 91645204,
21425312 and 21621063).
[13]
[14]
Conflict of interest
The authors declare no conflict of interest.
[15]
a) P. M. Loggenberg, L. Carlton, R. G. Copperthwaite,
G. J. Hutchings, Journal Of the Chemical Society-
Chemical Communications 1987, 541-543; b) H. Y.
Wang, J. P. Liu, J. K. Fu, Q. R. Cai, Acta Physico-
Chimica Sinica 1991, 7, 681-687; c) D. B. Cao, F. Q.
Zhang, Y. W. Li, J. G. Wang, H. J. Jiao, J. Phys. Chem.
B 2005, 109, 10922-10935; d) A. Andersen, S. M.
Keywords: heterogeneous catalysis • syngas conversion •
zeolites • ethylene • shape selective
[1]
a) J. Z. Li, Y. X. Wei, J. R. Chen, S. T. Xu, P. Tian, X. F.
Yang, B. Li, J. B. Wang, Z. M. Liu, ACS Catal. 2015, 5,
661-665; b) N. H. Ahn, S. Seo, S. B. Hong, Catal. Sci.
This article is protected by copyright. All rights reserved.