Organic Letters
Letter
In addition, DFT calculations were performed to gain a
deeper insight into the reaction mechanism. It should be noted
that the obtained results are in perfect agreement with data
obtained by theoretical calculation (Scheme 6). Cyclization of
bisazide 2a into azidotriazole has a quite low activation barrier
(16.5 kcal/mol). Moreover, stepwise substitution was con-
firmed by isolation of 4-chlorotriazole 6a as the minor product.
An alternative pathway for formation of 3a by transformation
of 3-chlorotriazole 6a has a much higher activation energy for
this step (35.6 kcal/mol). Therefore, cyclization of 2a into
azidotriazole 3a is much faster than the formation of 3a from
6a.
In summary, the reaction of 4,4-dichloro-1,2-diazabuta-1,3-
dienes with sodium azide has resulted in the formation of
corresponding 1,1-bisazides as highly reactive intermediates. As
a result, after elimination of molecular nitrogen, 4-azido-1,2,3-
triazoles were prepared in up to 95% yield. The formation of
bisazides was confirmed by SPAAC with cyclooctyne and
B3LYP calculations. It was demonstrated that 4-azido-1,2,3-
triazoles are highly attractive building blocks for subsequent
preparation of various 1,2,3-triazole-derived compounds.
Makarov for providing mass spectrometry equipment for this
work.
REFERENCES
■
(1) (a) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
̈
(b) Brase, S.; Banert, K. Organic Azides: Syntheses and Applications;
̈
John Wiley & Sons: Chichester, UK, 2010. (c) Brase, S.; Gil, C.;
Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
̈
(2) Haring, A. P.; Kirsch, S. F. Molecules 2015, 20, 20042.
(3) Nenajdenko, V. G.; Shastin, A. V.; Gorbachev, V. M.; Shorunov,
S. V.; Muzalevskiy, V. M.; Lukianova, A. I.; Dorovatovskii, P. V.;
Khrustalev, V. N. ACS Catal. 2017, 7, 205.
(4) (a) South, S.; Westmeyer, D.; Dukesherer, D. R.; Jakuboski, L.
Tetrahedron Lett. 1996, 37, 1351. (b) Baldoli, C.; Lattuada, L.;
Licandro, E.; Maiorana, S.; Papagni, A. J. Heterocycl. Chem. 1989, 26,
241.
(5) (a) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.;
Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Eur. J. Org. Chem. 2009,
2009, 3109. (b) Attanasi, O. A.; Caglioti, L. Org. Prep. Proced. Int.
1986, 18, 299. (c) Attanasi, O. A.; Filippone, P.; Serra-Zanetti, F. In
Trends in Heterocyclic Chemistry; Menon, J., Ed.; Research Trends:
Trivandrum, 1993; Vol. 3, p 461. (d) Attanasi, O. A.; Filippone, P.;
Serra-Zanetti, F. In Progress in Heterocyclic Chemistry; Suschitzky, H.,
Scriven, E. F. V., Eds.; Pergamon: Oxford, 1995; Vol. 7, p 1.
(e) Attanasi, O. A.; Filippone, P. In Topics in Heterocyclic Chemistry;
Attanasi, O. A., Spinelli, D., Eds.; Research Signpost: Trivandrum,
1996; Vol. 1, p 157. (f) Attanasi, O. A.; Filippone, P. Synlett 1997,
1997, 1128. (g) Attanasi, O. A.; De Crescentini, L.; Filippone, P.;
Mantellini, F.; Santeusanio, S. ARKIVOC 2002, 11, 274.
(6) Shastin, A. V.; Sergeev, P. G.; Lukianova, A. I.; Muzalevskiy, V.
M.; Khrustalev, V. N.; Dorovatovskii, P. V.; Nenajdenko, V. G. Eur. J.
Org. Chem. 2018, 2018, 4996.
(7) (a) Carrie, R.; Danion, D.; Ackermann, E.; Saalfrank, R. W.
Angew. Chem., Int. Ed. Engl. 1982, 21, 287. (b) Carrie, R.; Danion, D.;
Ackermann, E.; Saalfrank, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21,
660. (c) Hall, H. K.; Ramezanian, M.; Saeva, F. D. Tetrahedron Lett.
1988, 29, 1235. (d) Saalfrank, R. W.; Wirth, U. Chem. Ber. 1989, 122,
519.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, optimization of reaction condi-
tions, characterization of products, X-ray data, copies of
NMR spectra of all products, and calculations details
Accession Codes
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(8) Saalfrank, R. W.; Maid, H. Chem. Commun. 2005, 5953.
(9) (a) Banert, K. Synthesis 2016, 48, 2361. (b) Banert, K. in Science
of Synthesis; de Meijere, A., Ed.; Thieme: Stuttgart, 2006; Vol. 24, p
747. (c) Banert, K. In Houben-Weyl, 4th ed; Kropf, H., Shaumann, E.,
Eds.; Thieme: Stuttgart, 1993; Vol. E15, p 2348.
(10) (a) Valeur, B. Molecular Fluorescence. Principles and Applications;
Wiley-VCH, 2002. (b) Wongkongkatep, J.; Ojida, A.; Hamachi, I.
Top. Curr. Chem. (Z) 2017, 375, 30. (c) Chen, X.; Wang, F.; Hyun, J.
Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2016,
45, 2976. (d) Jung, H.; Lee, H.; Kang, S. Appl. Chem. Eng. 2016, 27,
455. (e) Sarder, P.; Maji, D.; Achilefu, S. Bioconjugate Chem. 2015, 26,
963. (f) Zhu, H.; Fan, J.; Wang, B.; Peng, X. Chem. Soc. Rev. 2015, 44,
4337. (g) Sun, X.; Wang, Y.; Lei, Y. Chem. Soc. Rev. 2015, 44, 8019.
(h) Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S.
Chem. Soc. Rev. 2014, 43, 4563. (i) Mukherjee, S.; Thilagar, P. Dyes
Pigm. 2014, 110, 2. (j) Schaferling, M. Angew. Chem., Int. Ed. 2012,
51, 3532. (k) Yan, W.; Wang, Q.; Lin, Q.; Li, M.; Petersen, J. L.; Shi,
X. Chem. - Eur. J. 2011, 17, 5011. (l) Zhang, Y.; Ye, X.; Petersen, J. L.;
Li, M.; Shi, X. J. Org. Chem. 2015, 80, 3664. (m) Zhang, Y. C.; Jin, R.;
Li, L. Y.; Chen, Z.; Fu, L. M. Molecules 2017, 22, 1380.
(11) (a) Dehaen, W.; Bakulev, V. A.; Beryozkina, T. Top. Heterocycl.
Chem. 2014, 40, 1. (b) Zlotin, S. G.; Churakov, A. M.; Dalinger, I. L.;
Luk’yanov, O. A.; Makhova, N. N.; Sukhorukov, A. Y.; Tartakovsky,
V. A. Mendeleev Commun. 2017, 27, 535.
(12) (a) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem.
Soc. 2004, 126, 15046. (b) Dommerholt, J.; Rutjes, F. P. J. T.; van
Delft, F. L. Top. Curr. Chem. 2016, 374, 16. (c) Chupakhin, E. G.;
Krasavin, M. Yu. Chem. Heterocycl. Compd. 2018, 54, 483.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This study was supported Russian Foundation for Basic
Research (Grant Nos. 18-03-00791 and 16-29-10669) and, in
part, by the RUDN University Program “5-100”. Synchrotron
radiation-based single-crystal X-ray diffraction measurements
were performed at the unique scientific facility Kurchatov
Synchrotron Radiation Source supported by the Ministry of
Education and Science of the Russian Federation (Project
Code RFMEFI61917X0007). The authors acknowledge V.
Gorbachev for some experiments, Thermo Fisher Scientific
Inc., MS Analytica (Moscow, Russia), and personally Prof. A.
D
Org. Lett. XXXX, XXX, XXX−XXX