Inorganic Chemistry
Article
response in electronic and fluorescence spectra in the visible
region. L1 is sensitive and selective toward Sn4+ over other
biologically important ions studied, viz., Cr3+, Mg2+, Ca2+, Al3+,
Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+, and
Pb2+, as demonstrated by individual as well as competitive
metal ion titrations. Thus, these receptors could be used as a
dual probe for visual detection through change in color and
fluorescence. Whereas the fluorescence and absorption spec-
troscopy provided information for the formation of 1:1
complex between Sn4+and L1, viz., L1−Sn, the HRMS
confirmed the same unambiguously by exhibiting correct peak
pattern for the presence of tin in the complex. The tin-binding
capabilities of the nitrogen−oxygen binding core of oxo-
chromene rhodamine moieties available in L1 has been
examined by computational calculations at the DFT level.
The theoretical studies supported that Sn4+ coordinating with
the O atom of the oxo-chromene moiety, accompanied by the
transferring of electrons of the oxo-chromene, resulted in the
opening of the spiro-ring. The in situ prepared tin complex of
L1, viz., L1−Sn, was able to detect S2− in exactly the reverse
manner compared to what happens when Sn4+ is added to L1
in fluorescence spectroscopy. Thus, upon addition of S2− to
L1−Sn, the 580 nm band intensity decreases, suggesting the
release of L1 from the tin complex. The receptor L1 shows
intense change in its fluorescence emission when bound to Sn4+
in physiological conditions. Hence, the effectiveness of
compound L1 as a probe for intracellular detection of Sn4+
by confocal microscopy was also studied. Moreover, the
confocal microscopic analysis strongly suggested that com-
pound L1 could readily cross the membrane barrier of the
RAW cells, and rapidly sense intracellular Sn4+ and S2−.
REFERENCES
■
(1) (a) Chen, T.; Zhu, W.; Xu, Y.; Zhang, S.; Zhang, X.; Qian, X.
Dalton Trans. 2010, 39, 1316−1320. (b) Ho, M.-L.; Chen, K.-Y.; Lee,
G.-H.; Chen, Y.-C.; Wang, C.-C.; Lee, J.-F. Inorg. Chem. 2009, 48,
10304−10311. (c) Huang, W.; Zhou, P.; Yan, W.; He, C.; Xiong, L.;
Li, F.; Duan, C. J. Environ. Monit. 2009, 11, 330−335.
(2) (a) Snoeij, N. J.; Penninks, A. H.; Seinen, W. Environ. Res. 1987,
44, 335−353. (b) Sherman, L. R.; Masters, J.; Peterson, R.; Levine, S. J.
Anal. Toxicol. 1986, 10, 6−9.
(3) (a) Florea, A.-M.; Busselber, D. BioMetals 2006, 19, 419−427.
(b) Concise International Chemical Assessment Document 65; WHO:
Geneva, 2006.
(4) (a) Kim, H. N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Chem. Soc.
Rev. 2011, 40, 79−93. (b) Boens, N.; Leen, V.; Dehaen, W. Chem. Soc.
Rev. 2012, 41, 1130−1172. (c) Xu, Z.; Han, S. J.; Lee, C.; Yoon, J.;
Spring, D. R. Chem. Commun. 2010, 46, 1679−1681.
(5) Haugland, R. P. Molecular Probes. The Handbook: A Guide to
Fluorescent Probes and Labeling Technologies, 10th ed.; Invitrogen
Corporation: Carlsbad, CA, 2005.
(6) Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; T, Yi.; Huang, C.
Org. Lett. 2007, 9, 4729−4732.
(7) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.;
Springer: New York, 2006; p 67.
̈
(8) Yang, Y.-K.; Shim, S.; Tae, J. Chem. Commun. 2010, 46, 7766−
7768.
(9) (a) Zhaoa, Y.; Zhenga, B.; Dua, J.; Xiao, D.; Yanga, L. Talanta
2011, 85, 2194−2201. (b) Zhou, Y.; Zhang, J.; Zhou, H.; Zhang, Q.;
Ma, T.; Niu, J. Sens. Actuators, B 2012, 171−172, 508−514.
(c) Mahapatra, A. K.; Manna, S. K.; Mukhopadhyay, S. K.; Banik, A.
Sens. Actuators, B 2013, 183, 350−355. (d) Qi, W.; Li, C.; Zou, Y.;
Wang, H.; Yi, T.; Huang, C. Org. Biomol. Chem. 2012, 10, 6740−6746.
(10) (a) Kumar, M.; Kumar, N.; Bhalla, V.; Sharma, P. R.; Kaur, T.
Org. Lett. 2012, 14, 406−409. (b) Kar, C.; Adhikari, M. D.; Ramesh,
A.; Das, G. Inorg. Chem. 2013, 52, 743−752.
(11) (a) Weerasinghe, A. J.; Schmiesing, C.; Sinn, E. Tetrahedron Lett.
2009, 50, 6407−6410. (b) Saha, S.; Mahato, P.; Reddy, G. U.; Suresh,
E.; Chakrabarty, A.; Baidya, M.; Ghosh, S. K.; Das, A. Inorg. Chem.
2012, 51, 336−345.
(12) Yang, Z.; She, M.; Yin, B.; Cui, J.; Zhang, Y.; Sun, W.; Li, J.; Shi,
Z. J. Org. Chem. 2012, 77, 1143−1147.
(13) Ghosh, K.; Sarkar, T.; Samadder, A. Org. Biomol. Chem. 2012,
10, 3236−3243.
(14) Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam,
W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107−10111.
(15) Sreenath, K.; Clark, R. J.; Zhu, L. J. Org. Chem. 2012, 77, 8268−
8279.
ASSOCIATED CONTENT
■
S
* Supporting Information
1H NMR, 13C NMR, mass, and IR spectra as characterization
data of L1 and L1−Sn complex. Benesi−Hildebrand plot, Job’s
plot, UV−vis spectra, and photograph of the L1 solution in
presence and absence of Sn4+ ions. Additional tables. This
material is available free of charge via the Internet at http://
(16) Jou, M. J.; Chen, X.; Swamy, K. M. K.; Kim, H. N.; Kim, H.-J.;
Lee, S.-G.; Yoon, J. Chem. Commun. 2009, 7218−7220.
(17) Yuan, M.; Zhou, W.; Liu, X.; Zhu, M.; Li, J.; Yin, X.; Zheng, H.;
Zuo, Z.; Ouyang, C.; Liu, H.; Li, Y.; Zhu, D. J. Org. Chem. 2008, 73,
5008−5014.
(18) (a) Lohani, C. R.; Kim, J.-M.; Chung, S.-Y.; Yoon, J.; Lee, K.-H.
Analyst 2010, 135, 2079−2084. (b) Sahana, A.; Banerjee, A.; Lohar, S.;
Sarkar, B.; Mukhopadhyay, S. K.; Das, D. Inorg. Chem. 2013, 52,
3627−3633.
(19) (a) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997,
119, 7386−7387. (b) Xiang, Y.; Tong, A. Org. Lett. 2006, 8, 1549−
1552.
AUTHOR INFORMATION
■
Corresponding Author
Phone: +91 33 2668 4561.
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Notes
(20) (a) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71,
2703−2707. (b) Yang, C.; Liu, L.; Mu, T.-W.; Guo, Q.-X. Anal. Sci.
2000, 16, 537−539. (c) Shiraishi, Y.; Sumiya, S.; Kohno, Y.; Hirai, T. J.
Org. Chem. 2008, 73, 8571−8574.
(21) (a) Zhu, M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.;
Li, Y.; Wang, S.; Zhu, D. Org. Lett. 2008, 10, 1481−1484. (b) Long, L.;
Zhang, D.; Li, X.; Zhang, J.; Zhang, C.; Zhou, L. Anal. Chim. Acta
2013, 775, 100−105.
(22) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785−
789. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.
1989, 157, 200−206.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the DST-New Delhi (Project SR/S1/OC-44/2012)
for financial support. S.K.M. thanks UGC, New Delhi, India, for
a fellowship and also Bhaskar Pramanik for his support. We are
also thankful to Annesur Rahaman Centre for High Perform-
ance Computing, IACS, Kolkata, for providing us with
computational time.
I
dx.doi.org/10.1021/ic4007026 | Inorg. Chem. XXXX, XXX, XXX−XXX