J Fluoresc
4
.
Sinkeldam RW, Greco NJ, Tor Y (2010) Fluorescent analogs of
biomolecular building blocks: design, properties, and applications.
Chem Rev 110:2579–2619
Czarnik AW (1992) Fluorescent chemosensors for ion and mole-
cule recognition. Ed. American Chemical Society, Washington, DC
Numata M, Li C, Bae AH, Kaneko K, Sakurai K, Shinkai S (2005)
β-1,3-Glucan polysaccharide can act as a one-dimensional host to
create novel silica nanofiber structures. Chem Comm 4655–4657
Henry A (1968) The role of chromium in mammalian nutrition. J
Nutr 21:230–244
Gómez V, Callao MP (2006) Chromium determination and specia-
tion since 2000 trends. Anal Chem 25:1006–1015
Latva S, Jokiniemi J, Peraniemi S, Ahlgren M (2003) Separation of
picogram quantities of Cr(III) and Cr(VI) species in aqueous solu-
tions and determination by graphite furnace atomic absorption spec-
trometry. J Anal At Spectrom 18:84–86
with virtually decoupled fluorophore and receptor units. J Am
Chem Soc 122:968–969
27. Resendiz MJE, Noveron JC, Disteldorf H, Fischer S, Stang PJ
(2004) A self-assembled supramolecular optical sensor for Ni(II),
Cd(II), and Cr(III). Org Lett 6:651–653
28. Zyryanov GV, Palacios MA, Anzenbacher P (2007) Rational design
of a fluorescence-turn-on sensor array for phosphates in blood se-
rum. Angew Chem Int Ed 46:7849
29. Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J,
Zhang D (2007) A highly selective fluorescence turn-on sensor for
cysteine/homocysteine and its application in bioimaging. J Am
Chem Soc 129:10322–10323
5
6
.
.
7
8
9
.
.
.
3
3
3
0. Kim H, Lee M, Kim H, Kim J, Yoon J (2008) A new trend in
rhodamine-based chemosensors: application of spirolactam ring-
opening to sensing ions. Chem Soc Rev 37:1465–1472
1. Liu H, Wan X, Liu T, Li Y, Yao Y (2014) Cascade sensitive and
1
0. Arakawa H, Ahmad R, Naoui M, TaJmir-Riahi HA (2000) A com-
parative study of calf thymus DNA binding to Cr(III) and Cr(VI)
ions evidence for the guanine N-7-chromium-phosphate chelate
formation. J Biol Chem 275:10150–10153
3+
−
selective fluorescence OFF-ON-OFF sensor for Cr cation and F
anion. Sensors Actuators B 200:191–197
2. King CIM, Bergh JJ, Petzer JP (2011) Inhibition of monoamine
oxidase by selected C - and C -substituted isatin analogues.
Bioorg Med Chem 19:261–274
5
6
1
1. Li Z, Zhao W, Zhang Y, Zhang L, Yu M, Liu J, Zhang H (2011) An
3
+
‘
off-on’ fluorescent chemosensor of selectivity to Cr and its ap-
3
3. Jiang Y, Hansen TV (2011) isatin 1,2,3-triazoles as potent inhibitors
against caspase-3. Bioorg Med Chem Lett 21:1626–1629
4. Burdette SC, Lippard SJ (2001) ICCC34—golden edition of coor-
dination chemistry reviews. Coordination chemistry for the neuro-
sciences. Coord Chem Rev 216:333–361
plication to MCF-7 cells. Tetrahedron 67:7096–7100
2. Vincent JB (2000) Quest for the molecular mechanism of chromi-
um action and its relationship to diabetes. Nutr Rev 58:67–72
3. Bencheikh-Latmani R, Obraztsova A, Mackey MR, Ellisman MH,
Tebo BM (2006) Toxicity of Cr(III) to Shewanella sp. strain MR-4
during Cr(VI) reduction. Environ Sci Technol 41:214–220
4. Mahmoud ME, Yakout AA, Ahmed SB, Osman MM (2008)
Development of a method for chromium speciation by selective
solid phase extraction and preconcentration on alumina-
functionalized thiosemicarbazide. J Liq Chromatogr Relat
Technol 31:2475–2492
5. (1989) National research council, recommended dietary allowance,
Tenth Edition. National Academy Press, Washington, D. C.
6. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromi-
um compounds in humans. CRC Crit Rev Toxicol 36:155–163
7. Dai R, Yu C, Liu J, Lan Y, Deng B (2010) Photo-oxidation of
Cr(III)-citrate complexes forms harmful Cr(VI). Environ Sci
Technol 44:6959–6964
8. O’Brien T, Mandel HG, Pritchard DE, Patierno SR (2002) Critical role
of chromium (Cr)-DNA interactions in the formation of Cr-induced
polymerase arresting lesions. Biochemistry 41:12529–12537
9. Arar EJ, Paff JO (1991) Determination of dissolved hexavalent
chromium in industrial wastewater effluents by ion chromatogra-
phy and post-column derivatization with diphenylcarbazide. J
Chromatogr 546:335–340
0. Ososkov V, Kebbekus B, Chesbro D (1996) Field determination of
Cr(VI) in water at low ppb level. Anal Lett 29:1829–1850
1. Varnes AW, Dodson RB, Wehry EL (1972) Interactions of
transition-metal ions with photoexcited states of flavines.
Fluorescence quenching studies. J Am Chem Soc 94:946–950
2. Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J (2013) A
rhodamine-based fluorescent enhancement chemosensor for the de-
1
1
3
3
5. Prodi L (2005) Luminescent chemosensors: from molecules to
nanoparticles. New J Chem 29:20–31
1
3
6. Dhara A, Jana A, Konar S, Ghatak SK, Ray S, Das K,
Bandyopadhyay A, Guchhait N, Kar SK (2013) A novel
rhodamine-based colorimetric chemodosimeter for the rapid detec-
3+
tion of Al in aqueous methanol: fluorescent ‘OFF–ON’ mecha-
nism. Tetrahedron Lett 54:3630–3634
1
1
1
3
3
7. Dhara A, Jana A, Guchhait N, Ghosh P, Kar SK (2014) Rhodamine-
3+
based molecular clips for highly selective recognition of Al ions:
synthesis, crystal structure and spectroscopic properties. New J
Chem 38:1627–1634
8. Dhara A, Jana A, Guchhait N, Kar SK (2014) Isatin appended
rhodamine scaffold as an efficient chemical tool to detect selective-
3+
ly Al . J Lumin 154:369–375
1
3
9. Anthoni U, Christophersen C, Nielsen P, Puschl A, Schaumburg K
(1995) structure of red and orange fluorescein. Struct Chem 3:161–165
4
0. Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent rhodamine
hydrazone chemosensor for Cu(II) with high selectivity and sensi-
tivity. Org Lett 8:2863–2866
1. Lakowicz JR (1999) Principles of fluorescence spectroscopy.
Plenum, New York
2. Kubin RF, Fletcher AN (1952) Fluorescence quantum yields of
some rhodamine dyes. J Lumin 27:455–462
3. Bhattacharya B, Nakka S, Guruprasad L, Samanta A (2009)
Interaction of bovine serum albumin with dipolar molecules: fluores-
cence and molecular docking studies. J Phys Chem B 113:2143–2150
44. Teuchner K, Pfarrherr A, Stiel H, Freyera W, Leupold D (1993)
Spectroscopic properties of potential sensitizers for new photody-
namic therapy start mechanisms via two-step excited electronic
states. Photochem Photobiol 57:465–471
45. Stiel H, Teuchner K, Paul A, Freyer W, Leupold DJ (1994) Two-
photon excitation of alkyl-substituted magnesium phthalocyanine:
radical formation via higher excited states. Photochem Photobiol A
80:289–298
1
4
4
4
2
2
2
2
2
2
2
3+
tection of Cr in aqueous media. Dyes Pigments 97:148–154
3. Wan Y, Guo Q, Wang X, Xia A (2010) Photophysical properties of
rhodamine isomers: a two-photon excited fluorescent sensor for
3
+
trivalent chromium cation (Cr ). Anal Chim Acta 665:215–220
4. Huang K, Yang H, Zhou Z, Yu M, Li F, Gao X, Yi T, Huang C
3
+
(
2008) Multisignal chemosensor for Cr and its application in
bioimaging. Org Lett 10:2557–2560
5. Zhou Z, Yu M, Yang H, Huang K, Li F, Yi T, Huang C (2008)
FRET-based sensor for imaging chromium(III) in living cells.
Chem Commun 3387–3389
6. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A
Selective and sensitive fluoroionophore for HgII, AgI, and CuII
46. Long GL, Winefordner JD (1983) Limit of detection a closer look at
the IUPAC definition. Anal Chem 55:712A–724A
47. Kaur M, Kaur P, Dhuna V, Singh S, Singh K (2013) A ferrocene-
3+
pyrene based ‘turn-on’ chemodosimeter for Cr - application in
bioimaging. Dalton Trans 43:5707–5712