Chemical Science
Edge Article
1
5 X. Cao, W. Lin, K. Zheng and L. He, Chem. Commun., 2012,
Conclusions
48, 10529–10531.
Complementing the mBB method, dBB provides a highly- 16 S. Chen, Z.-j. Chen, W. Ren and H.-w. Ai, J. Am. Chem. Soc.,
sensitive method for sulde quantication with a detection
2012, 134, 9589–9592.
limit of 0.6 pM. In the presence of other sulydryl containing 17 M. C. T. Hartman and M. M. Dcona, Analyst, 2012, 137, 4910–
species, however, dBB extracts sulfur from other sources
4912.
thereby decreasing its delity for H
S quantication if other 18 V. S. Lin, A. R. Lippert and C. J. Chang, Proc. Natl. Acad. Sci.
thiols are present. Mechanistic investigations revealed that
U. S. A., 2013, 110, 7131–7135.
thiols with a- or b-hydrogens react to generate the BTE product. 19 A. R. Lippert, E. J. New and C. J. Chang, J. Am. Chem. Soc.,
Taken together, these results establish dBB as a highly-sensitive
2011, 133, 10078–10080.
method for H
S quantication, but also provide cautions for its 20 L. A. Montoya, T. F. Pearce, R. J. Hansen, L. N. Zakharov and
2
2
use in biological samples in which thiols are present.
M. D. Pluth, J. Org. Chem., 2013, 78, 6550–6557.
21 L. A. Montoya and M. D. Pluth, Chem. Commun., 2012, 48,
4
767–4769.
Acknowledgements
2
2 H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore,
D. J. Lefer and B. Wang, Angew. Chem., Int. Ed., 2011, 50,
9
3 R. Wang, F. Yu, L. Chen, H. Chen, L. Wang and W. Zhang,
Chem. Commun., 2012, 48, 11757–11759.
4 Y. Qian, J. Karpus, O. Kabil, S. Y. Zhang, H. L. Zhu,
R. Banerjee, J. Zhao and C. He, Nat. Commun., 2011, 2, 495.
5 Y. Qian, L. Zhang, S. T. Ding, X. Deng, C. He, X. E. Zheng,
H. L. Zhu and J. Zhao, Chem. Sci., 2012, 3, 2920–2923.
6 G. K. Kolluru, X. G. Shen, S. C. Bir and C. G. Kevil, Nitric
Oxide-Biol. Ch., 2013, 35, 5–20.
7 N. Kumar, V. Bhalla and M. Kumar, Coord. Chem. Rev., 2013,
257, 2335–2347.
28 H. J. Peng, W. X. Chen, Y. F. Cheng, L. Hakuna, R. Strongin
and B. H. Wang, Sensors, 2012, 12, 15907–15946.
29 V. S. Lin and C. J. Chang, Curr. Opin. Chem. Biol., 2012, 16,
595–601.
This work was supported by NIH grants R00GM092970 (to MDP)
and HL113303 (to CGK). We thank Matt Hartle for assistance
with EPR measurements. The NMR facilities at the University of
Oregon are supported by NSF/ARRA CHE-0923589. The
Biomolecular Mass Spectrometry Core of the Environmental
Health Sciences Core Center at Oregon State University is sup-
ported, in part, by the NIEHS (P30ES000210) and the NIH.
672–9675.
2
2
2
2
2
Notes and references
1
2
3
R. Wang, Physiol. Rev., 2012, 92, 791–896.
K. R. Olson, Antioxid. Redox Signaling, 2012, 17, 32–44.
P. K. Moore, M. Bhatia and S. Moochhala, Trends Pharmacol.
Sci., 2003, 24, 609–611.
4
5
K. Kida, M. Yamada, K. Tokuda, E. Marutani,
M. Kakinohana, M. Kaneki and F. Ichinose, Antioxid. Redox 30 A. R. Lippert, J. Inorg. Biochem., 2014, 133, 136–142.
Signaling, 2011, 15, 343–352.
M. S. Vandiver, B. D. Paul, R. S. Xu, S. Karuppagounder,
31 M. Ishigami, K. Hiraki, K. Umemura, Y. Ogasawara, K. Ishii
and H. Kimura, Antioxid. Redox Signaling, 2009, 11, 205–214.
F. Rao, A. M. Snowman, H. S. Ko, Y. Il Lee, V. L. Dawson, 32 J. K. Fogo and M. Popowsky, Anal. Chem., 1949, 21, 732–734.
T. M. Dawson, N. Sen and S. H. Snyder, Nat. Commun., 33 N. S. Lawrence, J. Davis and R. G. Compton, Talanta, 2000,
2013, 4, 1626.
52, 771–784.
6
7
P. Kamoun, M. C. Belardinelli, A. Chabli, K. Lallouchi and 34 J. Furne, A. Saeed and M. D. Levitt, Am. J. Physiol., 2008, 295,
B. Chadefaux-Vekemans, Am. J. Med. Genet., Part A, 2003,
16A, 310–311.
R1479–R1485.
1
35 C. T. Tran and E. Kim, Inorg. Chem., 2012, 51, 10086–10088.
N. Shibuya, S. Koike, M. Tanaka, M. Ishigami-Yuasa, 36 X. G. Shen, C. B. Pattillo, S. Pardue, S. C. Bir, R. Wang and
Y. Kimura, Y. Ogasawara, K. Fukui, N. Nagahara and
H. Kimura, Nat. Commun., 2013, 4, 1366.
O. Kabil and R. Banerjee, J. Biol. Chem., 2010, 285, 21903–
C. G. Kevil, Free Radical Biol. Med., 2011, 50, 1021–1031.
37 X. G. Shen, E. A. Peter, S. Bir, R. Wang and C. G. Kevil, Free
Radical Biol. Med., 2012, 52, 2276–2283.
38 E. A. Wintner, T. L. Deckwerth, W. Langston, A. Bengtsson,
D. Leviten, P. Hill, M. A. Insko, R. Dumpit,
E. VandenEkart, C. F. Toombs and C. Szabo, Br. J.
Pharmacol., 2010, 160, 941–957.
8
9
21907.
A. Stein and S. M. Bailey, Redox Biol., 2013, 1, 32–39.
0 M. Nishida, T. Sawa, N. Kitajima, K. Ono, H. Inoue, H. Ihara,
H. Motohashi, M. Yamamoto, M. Suematsu, H. Kurose,
1
A. van der Vliet, B. A. Freeman, T. Shibata, K. Uchida, 39 E. A. Peter, X. G. Shen, S. H. Shah, S. Pardue, J. D. Glawe,
Y. Kumagai and T. Akaike, Nat. Chem. Biol., 2012, 8, 714–724.
1 M. D. Hartle, S. K. Sommer, S. R. Dietrich and M. D. Pluth,
Inorg. Chem., 2014, 53, 7800–7802.
W. W. Zhang, P. Reddy, N. I. Akkus, J. Varma and
C. G. Kevil, J. Am. Heart Assoc., 2013, 2, e000387.
40 X. G. Shen, M. Carlstrom, S. Borniquel, C. Jadert, C. G. Kevil
and J. O. Lundberg, Free Radical Biol. Med., 2013, 60, 195–
200.
1
12 H. Kimura, Neurochem. Int., 2013, 63, 492–497.
3 Q. Li and J. R. Lancaster, Nitric Oxide-Biol. Ch., 2013, 35, 21–
1
3
4.
4 T. S. Bailey and M. D. Pluth, J. Am. Chem. Soc., 2013, 135,
6697–16704.
41 Y. Kimura, Y. Mikami, K. Osumi, M. Tsugane, J. Oka and
H. Kimura, FASEB J., 2013, 27, 2451–2457.
1
1
Chem. Sci.
This journal is © The Royal Society of Chemistry 2014