C O M M U N I C A T I O N S
The formation of hollow iron oxide nanoparticles under the TEM
electron beam when analyzing Fe nanoparticles stabilized by
trioctylphosphine oxide has been reported.4 To exclude such an
effect on our particles during TEM characterization, the particles
at different oxidation stages were kept under the electron beam
during periods of more than 30 min. No electron-beam-induced
changes were observed in any of the amine-stabilized particles we
analyzed (SI).
Acknowledgment. This work was supported by the Director,
Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231 and by the
DARPA/AFOSR DURINT Program Grant No. F49620-01-1-0474.
A.C. thanks the Generalitat de Catalunya, Departament d’Universitats,
Recerca i Societat de l’Informacio´ for financial support. V.F.P.
thanks financial support from MAT2006-13572-C02-02. We thank
Prof. J. Long and his group for the assistance and use of their
SQUID.
As indicated by high-resolution TEM (HRTEM), the oxide shells
around the colloidal Fe particles are polycrystalline (Figure 1F).
Crystal domains extend across the entire shell. However, no
preferential orientation of the lattices across the shell could be
deduced from our data. Regarding the crystal structure, while XRD
data allows us to safely exclude the presence of the hematite (R-
Fe2O3) phase, the line broadening associated with the small crystal
size domains makes it impossible to distinguish between magnetite
(Fe3O4) and maghemite (γ-Fe2O3) phases. Nonetheless, the X-ray
absorption near edge structure (XANES) spectra of the particles
oxidized in the temperature range between 200 and 250 °C resemble
that of a maghemite reference sample (SI). Oxidized nanoparticles
show no band at the pre-edge corresponding to Fe2+ and a shift of
the absorption spectrum to higher energies than that obtained for
magnetite.13 Both features allow us to identify the iron oxide phase
of the completely oxidized particles as maghemite. Further,
maghemite is a semiconductor with a 2.03 eV band gap, while
magnetite is a semimetal with a 0.14 eV band gap. Optical spectra
of hollow nanoparticles show the absorption band at wavelengths
lower than ∼600 nm, consistent with the maghemite phase of the
fully oxidized iron nanoparticles (SI).
Supporting Information Available: Detailed synthesis and ex-
perimental procedures, UV-vis, XRD, and XAS of the iron/iron oxide
nanoparticles, SQUID of the final iron oxide shells, histograms of the
particle sizes, and analysis of the electron beam influence during TEM
imaging and of the high-temperature oxidation of the particles in
solution. This material is available free of charge via the Internet at
References
(1) Carpenter, E. E.; Calvin, S.; Stroud, R. M.; Harris, V. G. Chem. Mater.
2003, 15, 3245-3246.
(2) (a) Peng, S.; Wang, C.; Xie, J.; Sun, S. J. Am. Chem. Soc. 2006, 128,
10676-10677. (b) Peng, S.; Sun, S. Angew. Chem., Int. Ed. 2007, 46,
1-5.
(3) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. J. Am. Chem. Soc.
2001, 123, 12798-12801.
(4) Latham, A. H.; Wilson, M. J.; Schiffer, P.; Williams, M. E. J. Am. Chem.
Soc. 2006, 128, 12632-12633.
(5) Farrell, D.; Majetich, S. A.; Wilcoxon, J. P. J. Phys. Chem. B 2007, 107,
11022-11030.
(6) van Wonterghem, J.; Mørup, S.; Charles, S. W.; Wells, S.; Villadsen, J.
While our experimental results point toward the formation of
maghemite by oxidation of the iron nanoparticles at temperatures
in the range of 200-250 °C, other authors report the total or partial
formation of magnetite by oxidation of iron at lower temperatures
or using other oxygen precursors.2,13,14 Maghemite and magnetite
are both thermodynamically metastable phases. However, the pre-
eminence of the maghemite phase over magnetite is consistent with
kinetic considerations: while the small kinetic barrier for the
transformation of magnetite to maghemite allows this phase
transition to take place at low temperatures, the maghemite to
hematite transformation is inhibited at temperatures lower than
300-400 °C because of the very different crystal structures.13,15
The slight difference between magnetite and maghemite crystalline
lattices might explain their strong dependence on the oxidation
conditions. The presence of water has also an important influence
on the oxidation procedure and the final nanostructures obtained.16
In summary, we detailed a synthetic route, based on the nanoscale
Kirkendall effect, to produce colloidal solutions of monodisperse
iron/iron oxide core-void-shell nanostructures and hollow
maghemite nanoparticles with controllable particle size and shell
thickness. A limitation on the size of the hollow nanostructures
that can be synthesized in solution exists. This depends on the iron
diffusivities and the growth of the crystal size domains in the
polycrystalline oxide shells.
Phys. ReV. Lett. 1985, 55, 410-412.
(7) (a) Fromhold, A. T., Jr.; Cook, E. L. Phys. ReV. 1967, 158, 600-612. (b)
Fromhold, A. T., Jr.; Cook, E. L. Phys. ReV. 1967, 163, 650-664. (c)
Cabrera, N.; Mott, N. F. Rep. Prog. Phys. 1949, 12, 163-184.
(8) Wang, C. M.; Baer, D. R.; Thomas, L. E.; Amonette, J. E.; Antony, J.;
Qiang, Y.; Duscher, G. J. Appl. Phys. 2005, 98, 094308.
(9) Smigelskas, A. D.; Kirkendall, E. O. Trans. AIME 1947, 171, 130-142.
(10) (a) Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G.
A.; Alivisatos, A. P. Science 2004, 304, 711-714. (b) Yin, Y.; Erdonmez,
C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P. AdV. Funct. Mater. 2006,
16, 1389-1399.
(11) (a) Grosvenor, A. P.; Kobe, B. A.; McIntyre, N. S. Surf. Sci. 2004, 565,
151-162. (b) Grosvenor, A. P.; Kobe, B. A.; McIntyre, N. S. Surf. Sci.
2005, 574, 317-321.
(12) (a) Leibbrandt, G. W. R.; Hoogers, G.; Habraken, F. H. P. M. Phys. ReV.
Lett. 1992, 68, 1947-1950. (b) Graat, P. C. J.; Somers, M. A. J.;
Vredenberg, A. M.; Mittemeijer, E. J. J. Appl. Phys. 1997, 82, 1416-
1422. (c) Roosendaal, S. J.; Vredenberg, A. M.; Habraken, F. H. P. M.
Phys. ReV. Lett. 2000, 84, 3366-3369.
(13) Signorini, L.; Pasquini, L.; Savini, L.; Carboni, R.; Boscherini, F.; Bonetti,
E.; Giglia, A.; Pedio, M.; Mahne, N.; Nannarone, S. Phys. ReV. B 2003,
68, 195423.
(14) Leibbrandt, G. W. R.; Spiekman, L. H.; Habraken, F. H. P. M. Surf. Sci.
1993, 287/288, 250-254.
(15) (a) Schimanke, G.; Martin, M. Solid State Ionics 2000, 136-137, 1235-
1240. (b) Ayyub, P.; Multani, M.; Barma, M.; Palkar, V. R.; Vijayaragha-
van, R. J. Phys. C: Solid State Phys. 1988, 21, 2229-2245.
(16) (a) Grosvenor, A. P.; Kobe, B. A.; McIntyre, N. S. Surf. Sci. 2004, 572,
217-227. (b) Roosendaal, S. J.; Bakker, J. P. R.; Vredenberg, A. M.;
Habraken, F. H. P. M. Surf. Sci. 2001, 494, 197-205.
JA072574A
9
10360 J. AM. CHEM. SOC. VOL. 129, NO. 34, 2007