E. Nikolla et al. / Journal of Catalysis 263 (2009) 220–227
227
Fig. 6. Calculated maximum rates of C–H bond activation in methane, C–C bond formation, and C–O bond formation are plotted as a function of temperature for Ni and Sn/Ni
surface alloy. It is assumed the C–H bond is activated on Ni(211) surface for Ni and on Sn/Ni(111) surface for Sn/Ni. The pre-exponential factor for this reaction is assumed
to be 105 1/s. The activation barrier for the formation of C–O and C–C bonds was calculated as the energy difference between the highest and lowest points on the potential
energy surfaces associated with the diffusion of C and O atoms and the formation of the C–O and C–C bonds respectively on the closed packed Ni (111) and Sn/Ni (111)
surfaces. The pre-exponential factors for these reactions are assumed to be 1013 1/s for both surfaces. The unit cell in the calculations was 3 × 3 for the (111) surface and
3
× 1 for the (211) surface. The concentration of Sn in the surface layer of Sn/Ni(111) was 2/9 ML.
ments performed herein, the rate-controlling step in the formation
of products on both surfaces is the activation of C–H bonds in
methane. We note that the rate controlling step is the step with a
lower rate between the activation of C–H bond and the formation
of C–O bond, i.e., the rate of C–C bonds cannot control the process
since it leads to a dead end in the reaction. Fig. 6 also shows that
at lower temperatures the rate-limiting step on both surfaces is the
formation of C–O bonds as has been postulated previously [24].
[8] J.R. Rostrupnielsen, L.J. Christiansen, Appl. Catal. A 126 (1995) 381.
[
9] H.S. Bengaard, J.K. Norskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molen-
broek, J.R. Rostrup-Nielsen, J. Catal. 209 (2002) 365.
[
10] E. Nikolla, A. Holewinski, J. Schwank, S. Linic, J. Am. Chem. Soc. 128 (2006)
11354.
[11] E. Nikolla, J. Schwank, S. Linic, J. Catal. 250 (2007) 85.
[12] E. Nikolla, J. Schwank, S. Linic, Catal. Today 136 (2008) 243.
13] D.L. Trimm, Catal. Today 49 (1999) 3.
[
[
[
[
14] D.L. Trimm, Catal. Today 37 (1997) 233.
15] C. Padeste, D.L. Trimm, R.N. Lamb, Catal. Lett. 17 (1993) 333.
16] S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-
Nielsen, F. Abild-Pedersen, J.K. Norskov, Nature 427 (2004) 426.
4
. Conclusion
[
17] E. Achenbach, E. Riensche, J. Power Sources 52 (1994) 283.
[
[
18] J.G. Xu, G.F. Froment, AIChE J. 35 (1989) 88.
19] J.G. Xu, G.F. Froment, AIChE J. 35 (1989) 97.
A kinetic assessment of methane steam reforming on Sn/Ni/YSZ
and Ni/YSZ catalysts is obtained using a combination of kinetic
studies, isotopic-labeling experiments, and DFT calculations. We
found that the reaction rate on Sn/Ni/YSZ and Ni/YSZ is first-order
with respect to methane and it is independent of the water partial
pressure. Furthermore, we established that C–H bond activation
in methane is the rate-limiting step for both catalysts. We found
that while on monometallic Ni the active sites are the under-
coordinated Ni sites, on Sn/Ni the active sites are more abundant,
well-coordinated terrace sites. The observed decrease in carbon de-
activation of Sn/Ni was attributed to the Sn-induced lowering in
the binding energy of carbon on low-coordinate sites, serving as
carbon nucleation center and to an improved propensity of Sn/Ni
to oxidize carbon atoms and fragments.
[
20] J.M. Wei, E. Iglesia, J. Catal. 224 (2004) 370.
[21] J.W. Snoeck, G.F. Froment, M. Fowles, Ind. Eng. Chem. Res. 41 (2002) 4252.
[
[
[
22] K. Ahmed, K. Foger, Catal. Today 63 (2000) 479.
23] P. Munster, H.J. Grabke, J. Catal. 72 (1981) 279.
24] G. Jones, J.G. Jokobsen, S.S. Shim, M.P. Andersson, J. Rossmeisi, F. Abild-
Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J.R. Rostrup-Nielsen, I. Chork-
endorff, J. Sehested, J.K. Norskov, J. Catal. 259 (2008) 147.
[25] E. Nikolla, J. Schwank, S. Linic, J. Am. Chem. Soc. (2009), Article ASAP.
[26] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C.
Fiolhais, Phys. Rev. B 46 (1992) 6671.
27] J.P. Perdew, Y. Wang, Phys. Rev. B 46 (1992) 12947.
[
[28] J.P. Perdew, K. Burke, M. Ernzerhof, Chemical Applications of Density-Functional
Theory 629 (1996) 453.
[29] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
[
[
30] S. Linic, J.W. Medlin, M.A. Barteau, Langmuir 18 (2002) 5197.
31] S. Laursen, S. Linic, Phys. Rev. Lett. (2006) 97.
[32] M. Enever, S. Linic, K. Uffalussy, J.M. Vohs, M.A. Barteau, J. Phys. Chem. B 109
(2005) 2227.
Acknowledgments
[33] G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901.
[34] G. Mills, H. Jonsson, G.K. Schenter, Surf. Sci. 324 (1995) 305.
[35] S. Linic, M.A. Barteau, J. Am. Chem. Soc. 126 (2004) 8086.
[36] S. Linic, M.A. Barteau, J. Catal. 214 (2003) 200.
We gratefully acknowledge the support of the US Depart-
ment of Energy DOE-BES, Division of Chemical Sciences (FG-02-
0
5ER15686), NSF (CBET 0756255), ONR (N00014-08-1-0122), DOE-
[37] H.S. Fogler, Elements of Chemical Reaction Engineering, 4th ed., Prentice–Hall,
2005.
NETL (FC26-05-NT-42516) and National Automotive Center (NAC).
[
[
[
38] R.L. Augustine, Heterogeneous Catalysis for Synthetic Chemist, CRC Press, 1996.
39] R.M. Koros, E.J. Nowak, Chem. Eng. Sci. 22 (1967) 470.
40] R.J. Madon, M. Boudart, Ind. Eng. Chem. Fundam. 21 (1982) 438.
References
[
41] S.B. Wang, G.Q. Lu, Energy Fuels 12 (1998) 1235.
[
1] C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998)
37.
[42] R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, John Wiley
& Sons, Inc., Canada, 1996.
[43] F. Abild-Pedersen, O. Lytken, J. Engbaek, G. Nielsen, I. Chorkendorff, J.K.
Norskov, Surf. Sci. 590 (2005) 127.
1
[2] J.R. Rostrup-Nielsen, in: Catalysis—Science and Technology, vol. 5, Springer,
Berlin, 1984.
[3] J.R. Rostrup-Nielsen, J. Sehested, J.K. Norskov, Adv. Catal. 47 (2002) 65.
[4] J. Rostrup-Nielsen, J.K. Norskov, Top. Catal. 40 (2006) 45.
[5] F. Abild-Pedersen, J.K. Norskov, J.R. Rostrup-Nielsen, J. Sehested, S. Helveg, Phys.
Rev. B (2006) 73.
[44] H. Burghgraef, A.P.J. Jansen, R.A. Vansanten, Surf. Sci. 324 (1995) 345.
[45] H. Burghgraef, A.P.J. Jansen, R.A. Vansanten, J. Chem. Phys. 101 (1994) 11012.
[46] H. Yang, J.L. Whitten, J. Chem. Phys. 96 (1992) 5529.
[47] H. Yang, J.L. Whitten, Surf. Sci. 255 (1991) 193.
[
[
6] N.C. Triantafyllopoulos, S.G. Neophytides, J. Catal. 217 (2003) 324.
7] T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A.
Ueno, K. Omoshiki, M. Aizawa, J. Power Sources 112 (2002) 588.
[48] P.E.M. Siegbahn, I. Panas, Surf. Sci. 240 (1990) 37.
[49] P. Kratzer, B. Hammer, J.K. Norskov, J. Chem. Phys. 105 (1996) 5595.
[50] K. Otsuka, S. Kobayashi, S. Takenaka, J. Catal. 200 (2001) 4.