C O MMU N I C A T I O N S
of methyleneaziridine derivatives16 is currently being studied in our
laboratories.
In summary, a novel catalytic stereo- and regioselective multiple-
site activation of alkynes has been discovered. A new mechanism
was proposed which involves the novel formation of â-halovinyl
palladium and π-allylpalladium species. The resulting multiple
functionalized haloenamines will find extensive applications in
organic chemistry.
Acknowledgment. We gratefully acknowledge financial support
from NIH (CA 99995-1) and the Robert A. Welch Foundation
(Grant No. D-1361, D-1460). We thank Professor John Marx, Mr.
David Chen, and Mr. Cody Timmons for helpful discussions and
assistance. Its contents are solely the responsibility of the authors
and do not necessarily represent the official views of the National
Cancer Institute.
Figure 1. X-ray structure of product 1.
Scheme 2
Supporting Information Available: Typical procedure, X-ray data,
1H and 13C NMR spectra of all pure products and CIF data for 1. This
material is available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles
and Applications of Organotransition Metal Chemistry; University Sci-
ences Books: Mill Valley, 1987; Chapters 7.4 and 17.1. (b) Trost, B. M.;
Verhoeven, T. R. In ComprehensiVe Organometallic Chemistry; Wilkin-
son, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982;
Vol. 8, pp 892-895.
(
2) (a) Hegedus, L. S. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, Vol. 4, 1991; pp. 551-570. (b)
Larock, R., In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp 290-297. (c) Wipf, P.;
Jahn, H. Tetrahedron 1996, 52, 12853-12910.
(
(
(
3) (a) Negishi, E.-i. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH
Publishers: New York, 2000; Chapter 4. (b) Pfaltz, A.; Lautens, M. In
ComprehesiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yama-
moto, H., Eds.; Springer-Verlag: Heidelberg, 1999; Vol. II, Chapter 24.
4) (a) Muller, T. E.; Beller, M. Chem. ReV. 1998, 98, 675-703. (b) Ricci,
A. Modern Amination Methods. Wiley VCH: Weinheim, 2000. (c)
Yamamoto, Y.; Radhakrishnan, U. Chem. Soc. ReV. 1999, 28, 199-207.
Aryl alkyne substrates (entries 2-7 of Table 1) were synthesized
by the Sonogashira coupling14 between propyne gas and aromatic
iodides or bromides in piperidine or triethylamine in the presence
(
d) Pohlki, F.; Doye, S. Chem. Soc. ReV. 2003, 32, 104-114.
5) (a) Li, G.; Wei, H.-X.; Kim, S. H.; Neighbors, M. Org. Lett. 1999, 1,
of catalytic amounts of Pd(PPh
3 4
) (1.0 mol %), triphenylphosphine
395-397. (b) Li, G.; Wei, H.-X.; Kim, S. H. Org. Lett. 2000, 2. 2249-
2252. (c) Wei, H.-X.; Kim, S. H.; Li, G. Tetrahedron 2001, 57, 3869-
3973.
(1.0 mol %), and copper (I) iodide (1.0 mol %). With aromatic
iodides, the reaction proceeds smoothly at room temperature, but
with bromides the optimal temperature was found to be at 70 °C.
For this preparation, the addition of triphenylphosphine was
important to ensure that the palladium does not precipitate out of
the reaction mixture.
(6) (a) Li, G.; Wei, H.-X.; Kim, S. H.; Carducci, M. D. Angew. Chem., Int.
Ed. 2001, 40, 4277-4280. (b) Wei, H.-X.; Kim, S. H.; Li, G. J. Org.
Chem. 2002, 67, 4777-4781. (c) Wei, H.-X.; Siruta, S.; Li, G. Tetrahedron
Lett. 2002, 43, 3809-3812. (d) Chen, D.; Timmons, C.; Wei, H.-X.; Li,
G. J. Org. Chem. 2003, 68, 5742-5745.
(7) For catalytic hydroamination of alkynes see refs 7-11.
(
8) (a) Kadota, I.; Shibuya, A.; Gyoung, Y. S.; Yamamoto, Y. J. Am. Chem.
Soc. 1998, 120, 10262-63. (b) Kadota, I.; Shibuya, A.; Lutete, L. M.;
Yamamoto, Y. J. Org. Chem. 1999, 64, 4570-4571.
The mechanism hypothesis is described in Scheme 2 which is
inspired by similar mechanisms proposed by Trost and Yama-
moto.7 The first step involves the formation of â-halovinyl
palladium species (A). This intermediate could be attributed to the
reaction of alkyne and N-chloro,N-(chloropalladium)benzene-
sulfonamide or to the oxidative addition of palladium (0) into an
initially formed â-chloroenamine by the reaction of the alkyne with
N,N-dichlorobenzenesulfonamide. Intermediate (A) undergoes â-hy-
dride elimination to give the following two species, an arylallene
(
9) (a) Johson, J.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923-
2924. (b) Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475-
,15
1478.
(
10) (a) Ryu, J. S.; Marks, T. J.; McDonald, F. E. Org. Lett. 2001, 3, 3091-
3094. (b) Li, T.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 0, 1757-
1
771. (c) Li, Y. W.; Marks, T. J. Organometallics 1996, 15, 3770-3772.
(
d) Douglass, M. R.; Ogasawara, M.; Hong, S.; Metz, M. V.; Marks, T.
J. Organometallics 2002, 21, 283-292.
(11) (a) Kim, Y. K.; Livinghouse, T. Tetrahedron Lett. 2001, 42, 2933-2935.
b) Fairfax, D.; Stein, M.; Livinghouse, T.; Jensen, M. Organometallics
997, 16, 1523-1525.
(
1
(
(
B) and Pd(H)NClBs (C). Intermediate (C) is converted into Pd-
Cl)NHBs (D) prior to the addition onto phenylallene (B) to result
(12) (a) Haak, E.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 1999, 38,
3
389-3391. (b) Heutling, A.; Doye, S. J. J. Org. Chem. 2002, 67, 1961-
1
964.
in a π-allylpalladium species (E). This complex finally decomposes
to give the product and to regenerate the Pd(0) catalyst.
(13) For palladium-catalyzed amination see: (a) Nettekoven, U.; Hartwig, J.
F. J. Am. Chem. Soc. 2002, 124, 1166-1167. (b) Kawatsuma, M.; Hartwig,
J. F. J. Am. Chem. Soc. 2000, 122, 9546-9547.
This mechanism can explain the observation that both the
chlorines of N,N-dichlorobenzenesulfonamide are consumed during
(
14) (a) Trost, B. M. Acc. Chem. Res. 1996, 29, 355-364. (b) Wolfe, J. P.;
Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31,
8
05-818. (c) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852-860.
1
the reaction process. Our preliminary H NMR experiments
(
15) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
indicated the presence of â-chloroenamine intermediate in the
catalytic process. The further study of mechanism will be conducted
in our laboratories. More importantly, the use of carbamates to
replace sulfonamides for this reaction has been proven to be
promising. The first application of this reaction for the synthesis
4467-4470.
(
16) Trost, B. M.; Brieden, W.; Baringhaus, K. H. Angew. Chem., Int. Ed.
Engl. 1992, 31, 1335-1336.
(17) Hayes, J. F.; Shipman, M.; Slawin, A. M. Z.; Twin, H. Heterocycles 2002,
58, 243-250.
JA0304188
J. AM. CHEM. SOC.
9
VOL. 125, NO. 44, 2003 13341