NETTO et al.
4 S. J. Kim, S. H. Kang, K. M. Park, H. Kim, W. C. Zin,
to 525°C resulted in the breakdown of the polymer
backbone caused by a considerable mass loss of
66.77%, affording a mixture of Pd (ASTM 05-0681)
and PdO (ASTM 06-0515) [20]. The partial oxidation
of the Pd content in the mixture is related to the slight
mass gain of 1.67% between 525–822°C. The decom-
position of PdO to Pd (calcd. 21.61%, found 21.74%)
occurred at 822–852°C.
M. G. Choi and K. Kim, Chem. Mater., 10 (1998) 1889.
5 K. Nomiya, R. Noguchi, K. Ohsawa, K. Tsuda and
M. Oda, J. Inorg. Biochem., 78 (2000) 363.
6 A. Maspero, S. Brenna, S. Galli and A. Penoni,
J. Organomet. Chem., 672 (2003) 123.
7 A. Kishimura, T. Yamashita and T. Ainda,
J. Am. Chem. Soc., 127 (2005) 179.
8 H. V. R. Dias, H. V. K. Diyabalanage, M. G. Eldabaja,
O. Elbjeirami, M. A. Rawashdeh-Omary and M. A. Omary,
J. Am. Chem. Soc., 127 (2005) 7489.
9 Y. Chi, E. Lay, T. Y. Chou, Y. H. Song and A. J. Carty,
Chem. Vap. Deposition, 11 (2005) 206.
Conclusions
10 A. V. G. Netto, R. C. G. Frem and A. E. Mauro,
Polyhedron, 24 (2005) 1086.
Synthesis, characterization and thermal behavior of
[Pd(μ-Pz)2]n (1), [Pd(μ-mPz)2]n (2), [Pd(μ-dmPz)2]n (3),
[Pd(μ-IPz)2]n (4) have been described in this work. TG
studies showed that the introduction of substituents at
the 4 position on the pyrazolyl moiety into coordination
polymers does not affect significantly their thermal sta-
bility. While the unsubstituted polymer 1 is stable up
to 301°C the decomposition of the main polymeric
chain started at about 336°C (2) and 298°C (4) when
methyl groups and iodine, respectively, are attached to
these polymers. On the other hand, the coordination
polymer 3 started to degrade at a temperature lower than
the other species, probably due to the steric hindrance
introduced by methyl groups at 3 and 5 position, adja-
cent to the coordination sites of the pyrazolyl ring.
11 P. M. Takahashi, L. P. Melo, R. C. G. Frem,
A. V. G. Netto, A. E. Mauro, R. H. A. Santos and
J. G. Ferreira, J. Mol. Struct., 783 (2006) 161.
12 P. B. da Silva, R. C. G. Frem, A. V. G. Netto,
A. E. Mauro, J. G. Ferreira and R. H. A. Santos,
Inorg. Chem. Commun., 9 (2006) 235.
13 A. V. G. Netto, A. E. Mauro, R. C. G. Frem,
E. T. de Almeida, A. M. Santana, J. Souza Jr. and
R. H. A. Santos, Inorg. Chim. Acta, 350 (2003) 252.
14 P. M. Takahashi, A. V. G. Netto, A. E. Mauro and
R. C. G. Frem, J. Therm. Anal. Cal., 79 (2005) 335.
15 A. V. G. Netto, A. M. Santana, A. E. Mauro, R. C. G. Frem,
E. T. de Almeida, M. S. Crespi and H. E. Zorel Jr.,
J. Therm. Anal. Cal., 79 (2005) 339.
16 A. V. G. Netto, P. M. Takahashi, R. C. G. Frem,
A. E. Mauro and H. E. Zorel Jr., J. Anal. Appl. Pyrolysis,
72 (2004) 183.
17 G. Minghetti, G. Banditelli and F. Bonati, J. Chem. Soc.,
Dalton Trans., (1979) 1851.
Acknowledgements
18 G. A. Ardizzoia, G. La Monica, S. Cenini, M. Moret and
N. Masciocchi, J. Chem. Soc., Dalton Trans., (1996) 1351.
19 K. Umakoshi, Y. Yamauchi, K. Nakamiya, T. Kojima,
M. Yamasaki, H. Kawano and M. Onishi, Inorg. Chem.,
42 (2003) 3907.
We thank the CNPq, CAPES and FAPESP for financial support.
References
20 Powder Diffraction File of the Joint Committee on Powder
Diffraction Standards. Sets 1-32, published by the Interna-
tional Center of Diffraction Data, Swarthmore, PA 19081,
USA 1982.
1 A. A. Mohamed, L. M. Pérez and J. P. Fackler Jr.,
Inorg. Chim. Acta, 358 (2005) 1657.
2 N. Masciocchi, G. A. Ardizzoia, S. Brenna, G. LaMonica,
A. Maspero, S. Galli and A. Sironi, Inorg. Chem.,
41 (2002) 6080.
DOI: 10.1007/s10973-006-7863-0
3 G. A. Ardizzoia, Prog. Inorg. Chem., 46 (1997) 151
and references therein.
792
J. Therm. Anal. Cal., 87, 2007