66
P. Panagiotopoulou, D.I. Kondarides / Journal of Catalysis 267 (2009) 57–66
[18] H.P. Bonzel, A.M. Bradshaw, G. Ertl (Eds.), Physics and Chemistry of Alkali
Metal Adsorption, Elsevier, Amsterdam, 1989.
[19] D. Heskett, Surf. Sci. 199 (1988) 67.
[20] H.P. Bonzel, Surf. Sci. Rep. 8 (1987) 43.
[21] D.L. Trimm, Z.I. Önsan, Catal. Rev. 43 (2001) 31.
[22] P. Panagiotopoulou, D.I. Kondarides, J. Catal. 225 (2004) 327.
[23] P. Panagiotopoulou, D.I. Kondarides, Catal. Today 112 (2006) 49.
[24] P. Panagiotopoulou, D.I. Kondarides, Catal. Today 127 (2007) 319.
[25] P. Panagiotopoulou, J. Papavasiliou, G. Avgouropoulos, T. Ioannides, D.I.
Kondarides, Chem. Eng. J. 134 (2007) 16.
and the associative formate route with redox regeneration, both of
which require the presence of oxygen vacancies on the support.
That is, water activation can occur by both hydroxyl formation
and redox water splitting on oxygen vacancies present on the re-
duced TiO2 surface. The role of water is related to regeneration of
hydroxyl groups and simultaneous re-oxidation of TiO2 [65–67].
5. Conclusions
[26] P. Panagiotopoulou, A. Christodoulakis, D.I. Kondarides, S. Boghosian, J. Catal.
240 (2006) 114.
[27] P. Panagiotopoulou, D.I. Kondarides, J. Catal. 260 (2008) 141.
[28] K. Foger, J.R. Anderson, J. Catal. 54 (1978) 318.
[29] P.G. Menon, G.F. Froment, J. Catal. 59 (1979) 138.
[30] O. Alexeev, D.-W. Kim, G.W. Graham, M. Shelef, B.C. Gates, J. Catal. 185 (1999)
170.
[31] J.T. Miller, B.L. Meyers, F.S. Modica, G.S. Lane, M. Vaarkamp, D.C.
Koningsberger, J. Catal. 143 (1993) 395.
[32] F. Benseradj, F. Sadi, M. Chater, Appl. Catal. B 228 (2002) 135.
[33] D.I. Kondarides, X.E. Verykios, J. Catal. 174 (1998) 52.
[34] J. Rieck, A. Bell, J. Catal. 103 (1987) 46.
The chemisorptive properties and WGS-activity of NM/TiO2 cat-
alysts (NM = Pt, Ru, Pd) can be modified appreciably by addition of
small amounts of alkalis (X = Li, Na, K, Cs) on the TiO2 support prior
to dispersion of the noble metal. Added alkalis interact strongly
with the TiO2 surface and result in the creation of hs–Ti3+ defects
which, in turn, affect the chemisorptive properties of NM atoms lo-
cated at the metal-support interface. The so formed NM–hs–Ti3+
sites are proposed to be the catalytically active sites for the WGS
reaction, since they are capable of adsorption and activation of
both CO and H2O. Increasing alkali loading results in an increase
of the number of these sites and in a monotonic decrease (increase)
of their adsorption strength toward hydrogen (carbon monoxide).
A volcano-type relation exists between the turnover frequency of
CO and the chemisorption strength of NM–hs–Ti3+ sites toward
hydrogen (or CO). Optimal results are obtained for Na-promoted
Pt/TiO2 catalysts with Na:Pt = 1:1, the specific activity (TOF) of
which is about three times higher, compared to that of the unpro-
moted catalyst. The effects of alkali promotion on the chemisorp-
tive and catalytic properties of NM/TiO2 catalysts may be
described as a ‘‘permanent” SMSI effect.
[35] B. Ngamsom, N. Bogdanchikova, M.A. Borja, P. Praserthdam, Catal. Commun. 5
(2004) 243.
[36] V.H. Sandoval, C.E. Gigola, Appl. Catal. A 148 (1996) 81.
[37] C.-C. Hong, C.-T. Yeh, Mater. Chem. Phys. 20 (1988) 471.
[38] H.-Y. Lin, Y.-W. Chen, Thermochim. Acta 419 (2004) 283.
[39] J.C. Conesa, J. Soria, J. Phys. Chem. 86 (1982) 1392.
[40] K.G. Azzam, I.V. Babich, K. Seshan, L. Lefferts, Appl. Catal. A 338 (2008) 66.
[41] Y.T. Kim, E.D. Park, H.C. Lee, D. Lee, K.H. Lee, Appl. Catal. B 90 (2009) 45.
[42] X. Zhu, T. Hoang, L.L. Lobban, R.G. Mallinson, Catal. Lett. 129 (2009) 135.
[43] I.V. Yentekakis, R.M. Lambert, M.S. Tikhov, M. Konsolakis, V. Kiousis, J. Catal.
176 (1998) 82.
[44] C.M. Kalamaras, P. Panagiotopoulou, D.I. Kondarides, A.M. Efstathiou, J. Catal.
264 (2009) 117.
[45] U. Diebold, Surf. Sci. Rep. 48 (2003) 53.
[46] K.D. Schierbaum, S. Fischer, M.C. Torquemada, J.L. de Segovia, E. Román, J.A.
Martín-Gago, Surf. Sci. 345 (1996) 261.
[47] H. Onishi, T. Aruga, C. Egawa, Y. Iwasawa, Surf. Sci. 199 (1988) 54.
[48] T. Ioannides, X.E. Verykios, J. Catal. 161 (1996) 560.
[49] J.D. Bracey, R. Burch, J. Catal. 86 (1984) 384.
References
[50] R. Burch, A.R. Flambard, J. Catal. 85 (1984) 16.
[1] M. Konsolakis, I.V. Yentekakis, Appl. Catal. B. 29 (2001) 103.
[2] M. Konsolakis, I.V. Yentekakis, A. Palermo, R.M. Lambert, Appl. Catal. B 33
(2001) 293.
[3] G. Goula, P. Katzourakis, N. Vakakis, T. Papadam, M. Konsolakis, M. Tikhov, I.V.
Yentekakis, Catal. Today 127 (2007) 199.
[4] S.S. Mulla, N. Chen, L. Cumaranatunge, W.N. Delgass, W.S. Epling, F.H. Ribeiro,
Catal. Today 114 (2006) 57.
[5] G. Avgouropoulos, E. Oikonomopoulos, D. Kanistras, T. Ioannides, Appl. Catal. B
65 (2006) 62.
[51] G. Marcelin, J.E. Lester, S.F. Mitchell, J. Catal. 102 (1986) 240.
[52] S.J. Tauster, S.C. Fung, R.L. Garten, J. Am. Chem. Soc. 100 (1978) 170.
[53] S. Bernal, J.J. Calvino, M.A. Cuqui, J.M. Catica, C. Larese, J.A. Pérez Omil, J.M.
Pintado, Catal. Today 50 (1999) 175.
[54] G.L. Haller, D.E. Resasco, Adv. Catal. 36 (1989) 173.
[55] J.P. Belzunegui, J. Sanz, J.M. Rojo, J. Am. Chem. Soc. 112 (1990) 4066.
[56] C.G. Vayenas, S. Brosda, C. Pliangos, J. Catal. 203 (2001) 329.
[57] D.C. Grenoble, M.M. Estadt, D.F. Ollis, J. Catal. 87 (1981) 90.
[58] J. Barbier Jr., D. Duprez, Appl. Catal. B 3 (1993) 61.
[59] H. Cordatos, T. Bunluesin, J. Stubenrauch, J.M. Vohs, R.J. Gorte, J. Phys. Chem.
100 (1996) 785.
[6] H. Tanaka, S.-I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, Appl. Catal. A 250
(2003) 255.
[7] C. Pedrero, T. Waku, E. Iglesia, J. Catal. 233 (2005) 242.
[8] A.M. Kazi, B. Chen, J.G. Goddwin Jr., G. Marcelin, N. Rodriguez, R.T.K. Baker, J.
Catal. 157 (1995) 1.
[60] S. Hilaire, X. Wang, T. Luo, R.J. Gorte, J. Wagner, Appl. Catal. A 215 (2001) 271.
[61] Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B 27 (2000) 179.
[62] T. Shido, Y. Iwasawa, J. Catal. 141 (1993) 71.
[9] C.P. Huang, J.T. Richardson, J. Catal. 51 (1978) 1.
[10] H.N. Evin, G. Jacobs, J. Ruiz-Martinez, G.A. Thomas, B.H. Davis, Catal. Lett. 120
(2008) 166.
[11] J.M. Pigos, C.J. Brooks, G. Jacobs, B.H. Davis, Appl. Catal. A 328 (2007) 14.
[12] C.G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda, D. Tsiplakides, Electrochemical
Activation of Catalysis, Kluwer Academic Publishers/Plenum Press, New York,
2001.
[13] F.J. Williams, M.S. Tikhov, A. Palermo, N. Macleod, R.M. Lambert, J. Phys. Chem.
B 105 (2002) 2800.
[14] F. Dorado, A. de Lucas-Consuegra, P. Vernoux, J.L. Valverde, Appl. Catal. B 73
(2007) 42.
[63] G. Jacobs, L. Williams, U. Graham, G.A. Thomas, D.E. Sparks, B.H. Davis, Appl.
Catal. A 252 (2003) 107.
[64] G. Jacobs, P.M. Patterson, U.M. Graham, A.C. Crawford, B.H. Davis, Int. J.
Hydrogen Energy 30 (2005) 1265.
[65] K.G. Azzam, I.V. Babich, K. Seshan, L. Lefferts, J. Catal. 251 (2007) 153.
[66] K.G. Azzam, I.V. Babich, K. Seshan, L. Lefferts, Appl. Catal. B 80 (2008) 129.
[67] P.O. Graf, D.J.M. de Vlieger, B.L. Mojet, L. Lefferts, J. Catal. 262 (2009) 181.
[68] I.M. Brookes, C.A. Muryn, G. Thornton, Phys. Rev. Lett. 87 (2001) 266103.
[69] R. Schaub, P. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J.K. Norskov, F.
Besenbacher, Phys. Rev. Lett. 87 (2001) 266104.
[70] A. Tilocca, A. Selloni, J. Chem. Phys. 119 (2003) 7445.
[71] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301 (2003) 935.
[72] Q. Fu, W. Deng, H. Saltsburg, M. Flytzani-Stephanopoulos, Appl. Catal. B 56
(2005) 57.
[15] Ch. Karavasilis, S. Bebelis, C.G. Vayenas, J. Catal. 160 (1996) 205.
[16] A. de Lucas-Consuegra, F. Dorado, J.L. Valverde, R. Karoum, P. Vernoux, J. Catal.
251 (2007) 474.
[17] I.V. Yentekakis, G. Moggridge, C.G. Vayenas, R.M. Lambert, J. Catal. 146 (1994)
292.
[73] A. Goguet, F. Meunier, J.P. Breen, R. Burch, M.I. Petch, A.F. Chenciu, J. Catal. 226
(2004) 382.