9830
W.-P. Zhou et al. / Electrochimica Acta 56 (2011) 9824–9830
catalytic performance of 1-D nanostructures in the EOR may be
sites for ethanol adsorption and reaction as well as a facilitated
removal of chemisorbed CO on the nanowires. These results are
clearly different from previous conclusions in which it was advo-
cated that Pt nanostructures with a high density of low coordination
atoms are preferred in the EOR [2,8]. Although the detailed mecha-
nism for this morphology-dependent activity still remains elusive,
our results evidently show that the morphology of nanostructured
catalysts could have a far more profound effect than anticipated
in a complex surface reaction such as the ethanol oxidation reac-
tion. These results therefore are of importance in providing needed
structural insight into the rational design of and search for novel
nanostructured materials in ethanol electrocatalysis.
[13] S. Sun, F. Jaouen, J.-P. Dodelet, Adv. Mater. 20 (2008) 3900.
[14] C. Koenigsmann, W.-P. Zhou, R.R. Adzic, E. Sutter, S.S. Wong, Nano Lett. 10
(2010) 2806.
[15] S. Wang, S.P. Jiang, X. Wang, J. Guo, Electrochim. Acta 56 (2011) 1563.
[16] C. Koenigsmann, S.S. Wong, Energy Environ. Sci. 4 (2011) 1161.
[17] H. Wang, C.W. Xu, F.L. Cheng, S.P. Jiang, Electrochem. Commun. 9 (2007)
1212.
[18] H. Zhou, W.-P. Zhou, R.R. Adzic, S.S. Wong, J. Phys. Chem. C 113 (2009) 5460.
[19] M.I. Haftel, K. Gall, Phys. Rev. B 74 (2006) 035420.
[20] Y. Kondo, K. Takayanagi, Science 289 (2000) 606.
[21] E. Santos, P. Quaino, G. Soldano, W. Schmickler, Electrochem. Commun. 11
(2009) 1764.
[22] C. Koenigsmann, A.C. Santulli, K. Gong, M.B. Vukmirovic, W.-P. Zhou, E. Sutter,
S.S. Wong, R.R. Adzic, J. Am. Chem. Soc. 133 (2011) 9783.
[23] M.T.M. Koper, S.C.S. Lai, E. Herrero, in: M.T.M. Koper (Ed.), Fuel Cell Catalysis: A
Surface Science Approach, John Wiley & Sons, Inc., Hoboken, New Jersy, 2009.
[24] D.J. Tarnowski, C. Korzeniewski, J. Phys. Chem. B 101 (1997) 253.
[25] F. Colmati, G. Tremiliosi-Filho, E.R. Gonzalez, A. Berna, E. Herrero, J.M. Feliu,
Phys. Chem. Chem. Phys. 11 (2009) 9114.
[26] A.A. Abd-El-Latif, E. Mostafa, S. Huxter, G. Attard, H. Baltruschat, Electrochim.
Acta 55 (2010) 7951.
Acknowledgements
[27] S.C. Chang, L.W.H. Leung, M.J. Weaver, J. Phys. Chem. 94 (1990) 6013.
[28] H.A. Gasteiger, N. Markovic, J.P.N. Ross, E.J. Cairns, J. Phys. Chem. 97 (1993)
12020.
[29] J.S. Spendelow, Q. Xu, J.D. Goodpaster, P.J.A. Kenis, A. Wieckowski, J. Elec-
trochem. Soc. 154 (2007) F238.
[30] N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, R.A. van Santen, J. Phys. Chem. B 106
(2002) 12938.
[31] A.V. Tripkovic, K.D. Popovic, J.D. Lovic, V.M. Jovanovic, S.I. Stevanovic, D.V. Trip-
kovic, A. Kowal, Electrochem. Commun. 11 (2009) 1030.
[32] W.-P. Zhou, K. Sasaki, D. Su, Y. Zhu, J.X. Wang, R.R. Adzic, J. Phys. Chem. C 114
(2010) 8950.
This work was supported in part by U.S. Department of Energy,
Divisions of Chemical and Material Sciences, under the Contract
No. DE-AC02-98CH10886. Synthesis and characterization work (CK
and SSW) on nanowires was supported by the U.S. Department of
Energy, Basic Energy Sciences, Materials Sciences and Engineer-
ing Division. WPZ thanks for the financial support from the LDRD
program at Brookhaven National Laboratory.
[33] M.H. Shao, R.R. Adzic, Electrochim. Acta 50 (2005) 2415.
[34] M. Heinen, Z. Jusys, R.J. Behm, J. Phys. Chem. C 114 (2010) 9850.
[35] R.B. Kutz, B. Braunschweig, P. Mukherjee, R.L. Behrens, D.D. Dlott, A. Wieck-
owski, J. Catal. 278 (2011) 181.
[36] T. Iwasita, E. Pastor, Electrochim. Acta 39 (1994) 531.
[37] S.C.S. Lai, S.E.F. Kleyn, V. Rosca, M.T.M. Koper, J. Phys. Chem. C 112 (2008) 19080.
[38] M. Li, A. Kowal, K. Sasaki, N. Marinkovic, D. Su, E. Korach, P. Liu, R.R. Adzic,
Electrochim. Acta 55 (2010) 4331.
References
[1] A. Wieckowski, E.R. Savinova, C.G. Vayenas (Eds.), Catalysis and Electrocatalysis
at Nanoparticle Surfaces, Marcel Dekker, Inc., New York, 2003.
[2] N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z.L. Wang, Science 316 (2007) 732.
[3] M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross,
N.M. Markovic, J. Am. Chem. Soc. 127 (2005) 6819.
[4] S. Park, Y. Xie, M.J. Weaver, Langmuir 18 (2002) 5792.
[5] F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming,
Faraday Discuss. 125 (2004) 357.
[6] F. Maillard, E.R. Savinova, U. Stimming, J. Electroanal. Chem. 599 (2007) 221.
[7] J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W.-P. Zhou, R.R. Adzic, J. Am.
Chem. Soc. 131 (2009) 17298.
[39] Q. Wang, G.Q. Sun, L.H. Jiang, Q. Xin, S.G. Sun, Y.X. Jiang, S.P. Chen, Z. Jusys, R.J.
Behm, Phys. Chem. Chem. Phys. 9 (2007) 2686.
[40] A. Wieckowski, M. Rubel, C. Gutierrez, J. Electroanal. Chem. 382 (1995) 97.
[41] N.M. Markovic, J.P.N. Ross, Surf. Sci. Rep. 45 (2002) 117.
[42] A. López-Cudero, J. Solla-Gullón, E. Herrero, A. Aldaz, J.M. Feliu, J. Electroanal.
Chem. 644 (2010) 117.
[8] Z.-Y. Zhou, Z.-Z. Huang, D.-J. Chen, Q. Wang, N. Tian, S.-G. Sun, Angew. Chem.
Int. Ed. 49 (2010) 411.
[9] M. Subhramannia, V.K. Pillai, J. Mater. Chem. 18 (2008) 5858.
[10] S.W. Lee, S. Chen, W. Sheng, N. Yabuuchi, Y.-T. Kim, T. Mitani, E. Vescovo, Y.
Shao-Horn, J. Am. Chem. Soc. 131 (2009) 15669.
[11] J.Y. Chen, B. Lim, E.P. Lee, Y.N. Xia, Nano Today 4 (2009) 81.
[12] Y. Takasu, T. Iwazaki, W. Sugimoto, Y. Murakami, Electrochem. Commun. 2
(2000) 671.
[43] E.G. Ciapina, S.F. Santos, E.R. Gonzalez, J. Electroanal. Chem. 644 (2010) 132.
[44] S.-C. Chang, Y. Ho, M.J. Weaver, Surf. Sci. 265 (1992) 81.
[45] B. Hammer, Top. Catal. 37 (2006) 3.
[46] A.D. Karmazyn, V. Fiorin, S.J. Jenkins, D.A. King, Surf. Sci. 538 (2003) 171.
[47] B.E. Hayden, K. Kretzschmar, A.M. Bradshaw, R.G. Greenler, Surf. Sci. 149 (1985)
394.
[48] B. Hammer, Y. Morikawa, J.K. Nørskov, Phys. Rev. Lett. 76 (1996) 2141.
[49] B. Hammer, J.K. Nørskov, Adv. Catal. 45 (2000) 71.