7
206
V. Zin et al. / Electrochimica Acta 54 (2009) 7201–7206
Table 4
structure with a lattice parameter of ca. 3.91 Å. Furthermore, it was
observed that sonication enables the production of Pt nanoparticles
with high purity, controlled structure and homogenous nanometric
crystalline size.
Particle sizes and surface areas of Pt nanoparticles showing variation of ꢀ (chi) [the
varying process parameter] and ꢁ [the cathode efficiency (%)].
Test #
ꢀ
ꢁ/%
Particle size/nm
Surface area/m2
g
−1
1
2
3
4
5
0.222
0.2857
0.3
0.375
0.5
67.5
80.5
59.3
83.4
73.8
10.1
11
10.6
9.5
27.76
25.49
26.45
29.51
26.97
Acknowledgements
The authors would like to thank the European Community Sixth
Framework Program through a STREP grant to the SELECT-NANO,
Contract No. 516922.03/25/2005 for their kind financial support.
10.4
To support these observations, the volume-averaged particle
size was calculated from the full width half-maximum of the (1 1 1)
peak for various time management parameters (ꢀ) using Fig. 4(b)
and the Scherrer equation [36,37]:
References
[1] N. Moriguchi, J. Chem. Soc. Jpn. 55 (1934) 749.
[2] B.G. Pollet, S.S. Phull, Recent Research Developments in Electrochemistry,
Transworld Research Network Publisher, India, 2001, (Chap 4) p. 55.
kꢂ
d (Å ) =
(4)
[3] R. Viennet, V. Ligier, J.-Y. Hihn, D. Bereiziat, P. Nika, M.-L. Doche, Ultrason.
Sonochem. 11 (3–4) (2004) 125.
ˇ cos ꢃ
[
[
4] H. Zhang, L.A. Coury, Anal. Chem. 65 (1993) 1552.
5] R.G. Compton, J.C. Eklund, S.D. Page, G.H.W. Sanders, J. Booth, J. Phys. Chem. 98
(1994) 12410.
6] R.G. Compton, J.C. Eklund, F. Marken, T.O. Rabbit, R.P. Ackerman’s, D.N. Waller,
Electrochim. Acta 42 (1997) 2919.
where d is the average particle size in Å, k is a shape-sensitive
coefficient (0.9, assuming spherical spheres), ꢂ the wavelength of
radiation used (1.54184 Å), ˇ is the full width half-maximum of the
peak in radian and ꢃ is the angle at the position of peak maximum
in radian.
Table 4 gives the average particle size for several management
parameters (ꢀ) using the Scherrer equation. For a time management
parameter of 0.375 corresponding to a cathode efficiency of 83.4%,
the lowest average particle size was found to be 11 nm, which is in
good agreement with our previous findings.
[
[
7] J.P. Lorimer, B. Pollet, S.S. Phull, T.J. Mason, D.J. Walton, Electrochim. Acta 43
(1998) 449.
[
[
8] P.R. Birkin, S. Silva-Martinez, Ultrason. Sonochem. 4 (2) (1997) 121.
9] P.R. Birkin, H.-M. Hirsimaki, J.G. Frey, T.G. Leighton, Electrochem. Commun. 8
(
2006) 1603.
[10] B.G. Pollet, J.-Y. Hihn, M.-L. Doche, J.P. Lorimer, A. Mandroyan, T.J. Mason, J.
Electrochem. Soc. 154 (10) (2007) E131.
11] Z.G. Bai, D.P. Yu, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, S.Q. Feng, J. Xu, L.P. You,
Mater. Sci. Eng. B 72 (2000) 117.
[12] A. Gedanken, Ultrason. Sonochem. 11 (2004) 47.
[13] J.-M. Qiu, J. Bai, J.-P. Wang, Appl. Phys. Lett. 89 (22) (2006) 222506.
[
From, the calculated average particle sizes, it is possible to
2
−1
determine the surface area (SA in m g ) of platinum, assuming
homogeneously distributed and spherical particles, as follows:
[
14] V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N.
Ross, N.M. Markovic, Nat. Mater. 6 (2007) 241.
[
15] R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108 (2008) 845.
SA = 6
× 1000
(5)
[16] J. Reisse, H. Francois, J. Vandercammen, O. Fabre, A. Kirsch-de Mesmaeker, C.
Maerschalk, J.L. Delplancke, Electrochim. Acta 39 (1) (1994) 37.
[
ꢅ × d
17] J. Reisse, T. Caulier, C. Deckerkheer, O. Fabre, J. Vandercammen, J.L. Delplancke,
R. Winand, Ultrason. Sonochem. 3 (1996) S147.
where ꢅ is the density of Pt particles (21.4 g cm−3) and d is the aver-
age particle size in nm. Table 4 shows the average particle sizes,
the surface area, the time management parameter and the cathode
efficiency. It was found that from the calculated average Pt particle
sizes, surface areas varied between 25 and 30 m g for all the tests
indicating that the Pt nanopowders synthesized sonoelectrochem-
ically may be a good candidate for Fuel Cell applications [37]. For
example, recently, Liu et al. [37] showed that Pt nanoparticles with
[18] M. Dabalà, B.G. Pollet, V. Zin, E. Campadello, T.J. Mason, J. Appl. Electrochem. 38
395) (2008) 402.
[
(
19] D.A. Jones, Principles and Prevention of Corrosion, 2nd ed., Macmillan Publish-
ing Company, 1992.
2
−1
[20] A. Brenner, Electrodeposition of Alloys: Principles and Practices, Academic
Press, New York, 1963.
[21] M.A. Margulis, A.N. Malt’sev, Zh. Fiz. Khim. 43 (1969) 1055.
[
22] M.A. Margulis, I.M. Margulis, Ultrason. Sonochem. 10 (2003) 343.
[23] J.L. Hardcastle, J.C. Ball, Q. Hong, F. Marken, R.G. Compton, S.D. Bull, S.G. Davies,
Ultrason. Sonochem. 7 (1) (2000) 7.
2
−1
surface areas below 65 m g indicated excellent electrocatalytic
activities for the O2 reduction reaction in PEMFC.
[
[
24] M.E. Hyde, R.G. Compton, J. Electroanal. Chem. 531 (2002) 19.
25] S.S. Abd El Rehim, A.M. Ibrahim Magdy, M.M. Dankeria, J. Appl. Electrochem. 32
(
2002) 1019.
[26] C. Sauter, M.A. Emin, H.P. Schuchmann, S. Tavman, Ultrason. Sonochem. 15
2008) 517.
4
. Conclusions
(
[
27] R.A. Young (Ed.), The Rietveld Method, International Union of Crystallography,
This paperreportsforthe firsttime the production of Ptnanopar-
Oxford University Press, Oxford, 1993.
ticles from aqueous chloroplatinic solutions in the presence of
low-frequency high-power ultrasound (20 kHz). It was shown that
Pt particles can be synthesized with nanometric dimension pro-
viding that tON and tUS remain below 0.5 s with a maximum of
process efficiency, ꢀ of 0.5 which exhibited a mean grain size rang-
ing from 11 to 15 nm. SEM and TEM studies showed that globular
clusters had a mean size ranging between 100 and 200 nm which in
turn aggregated and built complex structures. The morphological
and structural studies showed that pure Pt metallic nanoparticles
were produced sonoelectrochemically. The smallest produced par-
ticles had a mean dimension of about 13 nm, and exhibited a fcc
[28] L. Lutterotti, Maud version 2.0: Materials Analysis using Diffraction, 2005 (avail-
able via DIALOG) http://www.ing.unitn.it/∼maud.
[
29] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and
Amorphous Materials, 2nd ed., Wiley-VCH, 1974.
ham, 1974.
[32] K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature 353 (1991) 414.
[33] J.L. Lábár, Microsc. Microanal. 14 (4) (2008) 287.
[34] J.L. Lábár, Microsc. Microanal. 14 (6.) (2008).
[
35] J.L. Làbàr, Process Diffraction version 6.0.4, available via DIALOG, 2002.
[36] S.P. Jiang, Z. Liu, H.L. Tang, M. Pu, Electrochim. Acta 51 (2006) 5721.
[37] Z. Liu, Z.Q. Tian, S.P. Jiang, Electrochim. Acta 52 (2006) 1213.