Paper
RSC Advances
offer the capability to automate a multi-step synthesis with less 19 N. Zhao, L. Li, T. Huang and L. Qi, Nanoscale, 2010, 2, 2418–
human operation.
2423.
2
0 H.-G. Liao, Y.-X. Jiang, Z.-Y. Zhou, S.-P. Chen and S.-G. Sun,
Angew. Chem., Int. Ed., 2008, 47, 9100–9103.
1 P. S. Kumar, I. Pastoriza-Santos, B. Rodriguez-Gonzalez,
F. J. G. de Abajo and L. M. Liz-Marzan, Nanotechnology,
2008, 19, 015606.
Conclusions
2
We have developed a continuous seed-mediated method for the
preparation of high-purity gold nanoplates with tunable thick-
ness, which are rolled or rigid depending on their sizes. These 22 S. Barbosa, A. Agrawal, L. Rodr ´ı guez-Lorenzo, I. Pastoriza-
nanoplates are poly-crystalline with different crystal faces and
Santos, R. n. A. Alvarez-Puebla, A. Kornowski, H. Weller
show a high electrochemical activity toward glucose oxidation.
and L. M. Liz-Marz ´a n, Langmuir, 2010, 26, 14943–14950.
This protocol is fast, reproducible and adaptable to microuidic 23 P. R. Sajanlal and T. Pradeep, Nano Res., 2009, 2, 306–320.
synthesis without any additional batch processing steps and 24 Z. Wang, J. Zhang, J. M. Ekman, P. J. Kenis and Y. Lu, Nano
probably could be extended to the synthesis of other types of
ultrathin nanoplates.
Lett., 2010, 10, 1886–1891.
25 Y. Qin, Y. Song, N. Sun, N. Zhao, M. Li and L. Qi, Chem.
Mater., 2008, 20, 3965–3972.
2
2
6 T. Huang, F. Meng and L. Qi, Langmuir, 2009, 26, 7582–7589.
7 X. Xu, J. Jia, X. Yang and S. Dong, Langmuir, 2010, 26, 7627–
7631.
Acknowledgements
This work was funded by the National Basic Research Program
of China (973 Program, 2012CB932800 and 2014CB932700), the 28 W. Ye, J. Yan, Q. Ye and F. Zhou, J. Phys. Chem. C, 2010, 114,
National Natural Science Foundation of China (21273220 and 15617–15624.
1422307), and “the Recruitment Program of Global youth 29 H. Hian ´a Teo, Chem. Commun., 2010, 46, 7112–7114.
2
Experts” of China.
30 S. E. Lohse, J. R. Eller, S. T. Sivapalan, M. R. Plews and
C. J. Murphy, ACS Nano, 2013, 7, 4135–4150.
3
1 D. Kumar, A. Kulkarni and B. Prasad, Colloids Surf., A, 2014,
References
443, 149–155.
1
2
3
4
5
Y. Xia and N. J. Halas, MRS Bull., 2005, 30, 338–348.
C. J. Murphy, Science, 2002, 298, 2139–2141.
P. V. Kamat, J. Phys. Chem. B, 2002, 106, 7729–7744.
M. A. El-Sayed, Acc. Chem. Res., 2001, 34, 257–264.
32 C. Bullen, M. J. Latter, N. J. D'Alonzo, G. J. Willis and
C. L. Raston, Chem. Commun., 2011, 47, 4123–4125.
33 V. Sebasti ´a n, S.-K. Lee, C. Zhou, M. F. Kraus, J. G. Fujimoto
and K. F. Jensen, Chem. Commun., 2012, 48, 6654–6656.
N. R. Jana, L. Gearheart and C. J. Murphy, Adv. Mater., 2001, 34 J. Boleininger, A. Kurz, V. Reuss and C. S ¨o nnichsen, Phys.
3, 1389. Chem. Chem. Phys., 2006, 8, 3824–3827.
B. Nikoobakht and M. A. El-Sayed, Chem. Mater., 2003, 15, 35 C.-H. Weng, C.-C. Huang, C.-S. Yeh, H.-Y. Lei and G.-B. Lee, J.
1
6
1957–1962.
Micromech. Microeng., 2008, 18, 035019.
7
8
C. Wang and S. Sun, Chem.–Asian J., 2009, 4, 1028–1034.
H. Feng, Y. Yang, Y. You, G. Li, J. Guo, T. Yu, Z. Shen, T. Wu
and B. Xing, Chem. Commun., 2009, 1984–1986.
J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang and Z. Zhang, Angew.
Chem., Int. Ed., 2006, 45, 1116–1119.
36 V. Sebastian Cabeza, S. Kuhn, A. A. Kulkarni and
K. F. Jensen, Langmuir, 2012, 28, 7007–7013.
37 L. L. Lazarus, A. S.-J. Yang, S. Chu, R. L. Brutchey and
N. Malmstadt, Lab Chip, 2010, 10, 3377–3379.
38 D. Shalom, R. C. Wootton, R. F. Winkle, B. F. Cottam, R. Vilar
and C. P. Wilde, Mater. Lett., 2007, 61, 1146–1150.
39 J. Wagner and J. M. K ¨o hler, Nano Lett., 2005, 5, 685–691.
9
1
1
1
0 N. Zhao, Y. Wei, N. Sun, Q. Chen, J. Bai, L. Zhou, Y. Qin, M. Li
and L. Qi, Langmuir, 2008, 24, 991–998.
1 R. Jin, Y. Cao, C. A. Mirkin, K. Kelly, G. C. Schatz and 40 S. Yang, T. Zhang, L. Zhang, S. Wang, Z. Yang and B. Ding,
J. Zheng, Science, 2001, 294, 1901–1903.
Colloids Surf., A, 2007, 296, 37–44.
2 A. Miranda, E. Malheiro, E. Skiba, P. Quaresma, 41 Y. Shao, Y. Jin and S. Dong, Chem. Commun., 2004, 1104–
P. A. Carvalho, P. Eaton, B. de Castro, J. A. Shelnutt and
E. Pereira, Nanoscale, 2010, 2, 2209–2216.
3 F. Kim, S. Connor, H. Song, T. Kuykendall and P. Yang,
1105.
42 B. Cao, B. Liu and J. Yang, CrystEngComm, 2013, 15, 5735–
5738.
1
1
1
1
1
1
Angew. Chem., Int. Ed., 2004, 43, 3673–3677.
4 D. Seo, C. I. Yoo, J. C. Park, S. M. Park, S. Ryu and H. Song,
Angew. Chem., Int. Ed., 2008, 47, 763–767.
5 G. H. Jeong, M. Kim, Y. W. Lee, W. Choi, W. T. Oh, Q. H. Park
and S. W. Han, J. Am. Chem. Soc., 2009, 131, 1672–1673.
6 C. Li, K. L. Shuford, M. Chen, E. J. Lee and S. O. Cho, ACS
Nano, 2008, 2, 1760–1769.
43 Q. Fu, Y. Sheng, H. Tang, Z. Zhu, M. Ruan, W. Xu, Y. Zhu and
Z. Tang, ACS Nano, 2015, 9, 172–179.
44 M. Pasta, F. La Mantia and Y. Cui, Electrochim. Acta, 2010, 55,
5561–5568.
45 J. Wang, J. Gong, Y. Xiong, J. Yang, Y. Gao, Y. Liu, X. Lu and
Z. Tang, Chem. Commun., 2011, 47, 6894–6896.
46 B. M. I. van der Zande, M. R. B ¨o hmer, L. G. J. Fokkink and
C. Sch ¨o nenberger, Langmuir, 2000, 16, 451–458.
47 B. M. Van der Zande, M. R. B ¨o hmer, L. G. Fokkink and
C. Sch ¨o nenberger, J. Phys. Chem. B, 1997, 101, 852–854.
7 M. S. Yavuz, W. Li and Y. Xia, Chem.–Eur. J., 2009, 15, 13181–
13187.
8 S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley
and Y. Xia, Acc. Chem. Res., 2008, 41, 1587–1595.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 37512–37516 | 37515