Journal of The Electrochemical Society, 148 ͑11͒ A1260-A1265 ͑2001͒
A1265
due to the energy gap between site A and site B ͓Fig. 11͑3͒ and
Kyoto University assisted in meeting the publication costs of this article.
3
0
͑
4͔͒. During lithium ion transfer from site A to site B, insertion of
References
the lithium ion into site A through the electrolyte occurs simulta-
neously. Finally, site A and site B, are filled with lithium ions. As is
shown in Fig. 11͑5͒, site A filled with lithium ion is thermodynami-
cally more unstable than site B filled with lithium ion, and hence
deintercalation of lithium ion proceeds from site A. When the
deintercalation of lithium ion from site A occurs, the electrode po-
tential for site A becomes more positive, and then, site A becomes
thermodynamically more stable than site B filled with lithium ion.
Then lithium ion is extracted from the B sites ͓Fig. 11͑6͔͒. There are
two possible routes for extraction of lithium ion from site B. One
route is that lithium ions extract directly from site B with a slow
process. Another route is that lithium ions transfer again from site B
to site A accompanied by heat generation again and are extracted
1. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 270, 590 ͑1995͒.
2. J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong, and B. M. Way,
Electrochim. Acta, 38, 1179 ͑1993͒.
. N. Imanishi, H. Kashiwagi, T. Ichikawa, Y. Takeda, O. Yamamoto, and M. Inagaki,
J. Electrochem. Soc., 140, 315 ͑1993͒.
. I. Mochida, C.-H. Ku, S.-H. Yoon, and Y. Korai, J. Power Sources, 75, 214 ͑1998͒.
. T. Zheng, J. S. Xue, and J. R. Dahn, Chem. Mater., 8, 389 ͑1996͒.
. M. Inaba, Z. Shiroma, A. Funabiki, and Z. Ogumi, Langmuir, 12, 1535 ͑1996͒.
. M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, J. Electro-
chem. Soc., 142, 20 ͑1995͒.
8. M. Inaba, H. Yoshida, and Z. Ogumi, J. Electrochem. Soc., 143, 2572 ͑1996͒.
9. Y.-S. Han, J.-S. Yu, G.-S. Park, and J.-Y. Lee, J. Electrochem. Soc., 146, 3999
͑1999͒.
3
4
5
6
7
3
0
10. M. Mohri, N. Yanagisawa, Y. Tajima, T. Tanaka, T. Mitate, S. Nakajima, M.
Yoshida, M. Yoshimoto, T. Suzuki, and H. Wada, J. Power Sources, 26, 545 ͑1989͒.
through site A. It has recently been shown by Inaba et al. the
reasons for hysteresis in the charge-discharge profiles of mesocarbon
microbeads heat-treated at lower temperatures by calorimetric
study.30 They observed heat generation during lithium extraction.
Hence, the latter route is more probable.
1
1. N. Awaya and Y. Arita, Jpn. J. Appl. Phys., Part 1, 30, 1813 ͑1991͒.
2. E. Kny, L. L. Levenson, W. J. James, and R. A. Auerbach, Thin Solid Films, 85, 23
1981͒.
3. S. Matsumoto, J. Mater. Sci. Lett., 4, 600 ͑1985͒.
1
1
30
͑
The above mechanism for lithium ion insertion and extraction is
in good agreement with that reported by Zheng et al.31 In the case of
large current densities, lithium insertion and extraction proceeds by
14. J. C. Angus and C. C. Hayman, Science, 241, 913 ͑1988͒.
15. T. Abe, T. Fukutsuka, M. Inaba, and Z. Ogumi, Carbon, 37, 1165 ͑1999͒.
16. T. Fukutsuka, T. Abe, M. Inaba, and Z. Ogumi, Tanso, 190, 252 ͑1999͒.
1
7. T. Fukutsuka, T. Abe, M. Inaba, and Z. Ogumi, Mol. Cryst. Liq. Cryst. Sect. A, 340,
17 ͑2000͒.
1
→ 2 → 3 → 7 → 8. For small current densities and keeping 0 V
5
for enough time, the reaction of lithium and carbonaceous thin films
1
1
2
2
8. F. Tuinstra and J. L. Koenig, J. Chem. Phys., 53, 1126 ͑1970͒.
9. G. Katagiri, Tanso, 175, 304 ͑1996͒.
0. D. S. Knight and W. B. White, J. Mater. Res., 4, 385 ͑1989͒.
1. E. Peled, J. Electrochem. Soc., 126, 2047 ͑1979͒.
occurs by 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8.
Conclusions
Carbonaceous thin films were prepared by C H /Ar glow dis-
22. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 51, 228
1995͒.
2
2
͑
charge plasma. Carbonaceous thin films in this study were homoge-
neous and pinhole free. RF power of the plasma was found to influ-
ence the crystallinity of carbonaceous thin films. The lithium ion
storage in different sites for the resultant carbonaceous thin films
was clarified by using cyclic voltammetry, charge-discharge mea-
surements, and linear sweep voltammetry. Carbonaceous materials
give various electrochemical properties for use in lithium-ion batter-
ies, and our present carbonaceous thin films can be regarded as a
model of carbonaceous materials heat-treated at lower temperatures.
2
2
2
3. R. Takagi, T. Okubo, K. Sekine, and T. Takamura, Denki Kagaku oyobi Kogyo
Butsuri Kagaku, 65, 333 ͑1997͒.
4. I. Mochida, C.-H. Ku, M. Egashira, and M. Kimura, Denki Kagaku oyobi Kogyo
Butsuri Kagaku, 66, 1281 ͑1998͒.
5. A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, J. Electrochem. Soc., 142,
1041 ͑1995͒.
26. T. Ohzuku, Y. Iwakoshi, and K. Sawai, J. Electrochem. Soc., 140, 2490 ͑1993͒.
27. K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H.
Fujimoto, J. Electrochem. Soc., 142, 716 ͑1995͒.
2
8. S.-J. Lee, T. Itoh, M. Nishizawa, K. Yamada, and I. Uchida, Denki Kagaku oyobi
Kogyo Butsuri Kagaku, 66, 1276 ͑1998͒.
Acknowledgments
2
3
9. S.-J. Lee, M. Nishizawa, and I. Uchida, Electrochim. Acta, 44, 2379 ͑1999͒.
0. M. Inaba, M. Fujikawa, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 147, 4008
This work was financially supported by a Grant-in-Aid for Sci-
entific Research ͑no. 11555238͒ from the Ministry of Education,
Science, Sports and Culture, Japan, and CREST of JST ͑Japan Sci-
ence and Technology͒.
͑
2000͒.
31. T. Zheng, W. R. McKinnon, and J. R. Dahn, J. Electrochem. Soc., 143, 2137
͑1996͒.