H. Nir, S. Tal, Y. Eichen and T. Carell, J. Am. Chem. Soc., 2006,
1
28, 1398.
3
4
(a) M. Gobe, K. Kon-no, K. Kandori and A. Kitahara, J. Colloid
Interface Sci., 1983, 93, 293; (b) S. H. Sun and C. B. Murray,
J. Appl. Phys., 1999, 85, 4325; (c) C. Petit, A. Taleb and
M. P. Pileni, J. Phys. Chem. B, 1999, 103, 1805;
(
d) J. P. Wilcoxon, J. E. Martin and P. Provencio, Langmuir,
000, 16, 9912; (e) F. S. Diana, S.-H. Lee, P. M. Petroff and
E. J. Kramer, Nano Lett., 2003, 3, 891.
2
(a) Y. H. Niu, L. K. Yeung and R. M. Crooks, J. Am. Chem. Soc.,
2
001, 123, 6840; (b) M.-K. Kim, Y.-M. Jeon, W. S. Jeon,
H.-J. Kim, S. G. Hong, C. G. Park and K. Kim, Chem. Commun.,
001, 667; (c) Y. Wang, J. Yang, Z. Zheng, M. D. Carducci, J. Jiao
and S. Seraphin, Angew. Chem., Int. Ed., 2001, 40, 549;
d) C. S. Love, V. Chechik, D. K. Smith, K. Wilson, I. Ashworth
and C. Brennan, Chem. Commun., 2005, 1971.
(a) T. Douglas, D. P. E. Dickson, S. Betteridge, J. Charnock,
C. D. Garner and S. Mann, Science, 1995, 269, 54;
2
Fig. 5 Semilog plot of Co nanocluster sizes as a function of time,
following rapid injection of Co16–calixarene 2 (K) or Co –PPE 4 (&)
2
(
into hot ODCB ([Co] = 28 mmol). See ESIz for particle size analysis.
5
6
Rapid injection of Co–alkyne complexes into preheated
ODCB solutions containing oleic acid8 yielded Co nano-
clusters with similar size distributions as above, and provided
an opportunity to further examine the influence of ligand
multivalency on particle size. Both Co16–calixarene 2 and
(
b) H. Yoshimura, Colloids Surf., A, 2006, 282–283, 464.
(a) J. P. Spatz, T. Herzog, S. Mossmer, P. Ziemann and M. Mo
Adv. Mater., 1999, 11, 149; (b) T. Thurn-Albrecht, J. Schotter,
G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum,
K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, Science,
¨
ller,
¨
2
000, 290, 2126; (c) W. A. Lopes and H. M. Jaeger, Nature, 2001, 414,
35; (d) L. A. Miinea, L. B. Sessions, K. D. Ericson, D. S. Glueck and
2
Co –PPE 4 yielded Co nanoclusters within the first 2 minutes
7
R. G. Grubbs, Macromolecules, 2004, 37, 8967.
after injection, but the initial size of the former was smaller
and changed little over time, whereas the latter experienced
significant postnuclear growth (Fig. 5 and ESIz). The
essentially invariant size of nanoclusters produced from 2
implies that calixarene 1 stabilizes the Co nanoclusters against
Ostwald ripening and other postnucleation growth processes,
in accordance with the TGA analysis.
7
8
O. Azzaroni, A. A. Brown, N. Cheng, A. Wei, A. M. Jonas and
W. T. S. Huck, J. Mater. Chem., 2007, 17, 3433.
(a) S. L. Tripp, S. V. Pusztay, A. E. Ribbe and A. Wei, J. Am.
Chem. Soc., 2002, 124, 7914; (b) S. L. Tripp, R. E. Dunin-
Borkowski and A. Wei, Angew. Chem., Int. Ed., 2003, 42, 5591;
(
c) T. Kasama, R. E. Dunin-Borkowski, M. R. Scheinfein,
S. L. Tripp, J. Liu and A. Wei, Adv. Mater., 2008, 20, 4248;
d) A. Wei, S. L. Tripp, J. Liu, T. Kasama and R. E. Dunin-
Borkowski, Supramol. Chem., 2009, 21, 189.
9 (a) P. H. Hess and P. H. Parker, Jr, J. Appl. Polym. Sci., 1966, 10,
915; (b) J. R. Thomas, J. Appl. Phys., 1966, 37, 2914;
c) D. P. Dinega and M. G. Bawendi, Angew. Chem., Int. Ed.,
999, 38, 1788; (d) V. F. Puntes, K. M. Krishnan and
(
The controlled thermochemistry of the multivalent
Co–calixarene complexes suggests that their transformation
into stable nanoclusters proceeds by prenucleation into
metastable capped clusters, followed by coalescence. These
results imply that calixarene 1 can also serve as a polyvalent
ligand for Co surfaces, although further studies are needed to
fully define the metal–adsorbate structure. Our comparative
study with monovalent ligands demonstrates that multivalent
species can influence the kinetics of nanocluster growth, both
prior to and after the critical nucleation event.
1
(
1
A. P. Alivisatos, Science, 2001, 291, 2115; (e) V. F. Puntes,
D. Zanchet, C. K. Erdonmez and A. P. Alivisatos, J. Am. Chem.
Soc., 2002, 124, 12874; (f) H. Bo
R. Brinkmann, N. Matoussevitch, N. Waldo
H. Mudrow, Inorg. Chim. Acta, 2003, 350, 617.
10 (a) A. Lagunas, C. Jimeno, D. Font, L. Sola and M. A. Pericas,
`
¨
nnemann, W. Brijoux,
¨
fner, N. Palina and
`
Langmuir, 2006, 22, 3823; (b) R. M. de Silva, V. Palshin,
F. R. Fronczek, J. Hormes and C. S. S. R. Kumar, J. Phys.
Chem. C, 2007, 111, 10320; (c) R. M. de Silva, V. Palshin,
K. M. N. d. Silver, L. L. Henry and C. S. S. R. Kumar,
J. Mater. Chem., 2008, 18, 738.
1 (a) A. V. Nabok, T. Richardson, F. Davis and C. J. M. Stirling,
Langmuir, 1997, 13, 3198; (b) X.-M. Li, M. R. de Jong, K. Inoue,
S. Shinkai, J. Huskens and D. N. Reinhoudt, J. Mater. Chem., 2001,
The authors gratefully acknowledge the National Science
Foundation (CHE-0243496) for financial support, Dr Philip
Fanwick for X-ray crystallographic analysis, Dr Daniel Lee
for microanalysis, and Clancy Kadrmas for assistance with
thermogravimetric analysis.
1
11, 1919; (c) J. Liu, J. Alvarez, W. Ong, E. Roman and A. E. Kaifer,
´
Langmuir, 2001, 17, 6762; (d) J. Liu, W. Ong and A. E. Kaifer,
Langmuir, 2002, 18, 5981; (e) L. Li, X. Sun, Y. Yang, N. Guan and
F. Zhang, Chem.–Asian J., 2006, 1, 664; (f) V. Huc and K. Pelzer,
J. Colloid Interface Sci., 2008, 318, 1; (g) Y. Sun, C. G. Yan, Y. Yao,
Y. Han and M. Shen, Adv. Funct. Mater., 2008, 18, 3981.
2 B. Happ, T. Bartik, C. Zucchi, M. C. Rossi, F. Ghelfi, G. Palyi,
G. Varadi, G. Szalontai, I. T. Horvath, A. Chiesivilla and
C. Guastini, Organometallics, 1995, 14, 809.
Notes and references
y X-Ray structural analysis (CCDC 722503) was performed using
MoK radiation on a Nonius KappaCCD, equipped with a graphite
a
crystal and incident beam monochromator.
z Additional mass loss for 4 and 5 (above 300 1C) is likely associated
with PPE and its byproducts; see ref. 12 for examples.
1
8
Oleic acid is widely used as a supporting surfactant in the synthesis
1
3 G. Gervasio, R. Rossetti and P. L. Stanghellini, Organometallics,
1
of Co nanoparticles, and can assist the initial decarbonylation. The
resulting nanoparticles are presumably passivated by a mixture of
alkynes and carboxylates.
985, 4, 1612.
1
1
4 M. J. Went, Adv. Organomet. Chem., 1997, 41, 69.
5 P. Chini and B. T. Heaton, Top. Curr. Chem., Springer-Verlag,
Berlin, 1977, vol. 71, pp. 3–70.
16 (a) K. Kruerke and W. Hubel, Chem. Ber., 1961, 94, 2829;
(b) R. S. Dickson and G. R. Tailby, Aust. J. Chem., 1969, 22, 1143.
17 V. Calvo-Perez, A. Vega C, P. Cortes and E. Spodine, Inorg. Chim.
Acta, 2002, 333, 15.
1
2
Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem., Int.
Ed., 2009, 48, 60.
(a) E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph, Nature,
1998, 391, 775; (b) K. Keren, R. S. Berman and E. Braun, Nano
Lett., 2004, 4, 323; (c) G. A. Burley, J. Gierlich, M. R. Mofid,
4
256 | Chem. Commun., 2009, 4254–4256
This journal is ꢁc The Royal Society of Chemistry 2009