A. Larran˜aga et al. / Materials Research Bulletin 44 (2009) 1–5
5
Europeo’’ (FSE), for the magnetic measurements and the X-ray
diffraction measurement respectively.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] S.M. Kauzlarich, P.K. Dorhout, J.M. Honig, J. Solid State Chem. 149 (2000) 3.
[2] C.N.R. Rao, J. Gopalakrihnan, New Directions in Solid State Chemistry. Structure,
Synthesis, Properties, Reactivity and Materials Design, Cambridge University
Press, Cambridge, 1986.
[3] M. Koskenlinna, Structural Features of Selenium(IV) Oxoanion Compounds, Jouko
Koskikallio, Finland, 1996.
[4] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, William
Andrew Publishing, LLC, Norwich, New York, USA, 2001.
[5] (a) B. Engelen, K. Boldt, K. Unterderweide, U. Bumer, Z. Anorg. Allg. Chem. 621
(1995) 331;
Fig. 8. Possible disposition of the crystallographically independent Cu(II) cations in
the crystal structure of Cu2O(SeO3).
(b) M. Koskenlinna, J. Kansikas, T. Leskela, Acta Chem. Scand. 48 (1994) 783;
(c) Z. Micka, I. Nemec, P. Vojtisek, J. Ondracek, J. Holsa, J. Solid State Chem. 112
(1994) 237;
(d) J. Valkonen, M. Koskenlinna, Acta Chem. Scand., Ser. A 32 (1978) 603;
(e) W.T.A. Harrison, G.D. Stucky, A.K. Cheetham, Eur. J. Solid State Inorg. Chem. 32
(1993) 347.
This hypothesis agrees with an antiferromagnetic alignment for
the two crystallografically independent copper(II) cations, one of
them with a multiplicity three times greater than the other one
[Cu(1) multiplicity 4 and Cu(2) multiplicity 12], which allows the
ferromagnetic alignment of two copper(II) cations (see Fig. 8),
giving rise to a ferrimagnetic behavior.
[6] (a) M. Wildner, Monatsh. Chem. 122 (1991) 585;
(b) V.P. McManus, W.T.A. Harrison, A.K. Cheetham, J. Solid State Chem. 92 (1991)
253;
(c) H. Efenberger, J. Solid State Chem. 70 (1987) 303;
(d) W.T.A. Harrison, G.D. Stucky, R.E. Morris, A.K. Cheetham, Acta Crystallogr.,
Sect. C 48 (1992) 1365;
(e) X. Dongrong, H. Yu, W. Enbo, A. Haiyan, L. Jian, L. Yangguang, X. Lin, H.
Changuen, J. Solid State Chem. 177 (2004) 2706.
4. Concluding remarks
The Cu2O(SeO3) phase has been synthesized by using super-
critical hydrothermal conditions. Its crystal structure has been
refined in the P213 cubic space group. The structure consists of a
three-dimensional framework constructed by two CuO5 square
pyramids and two SeO3 trigonal pyramids. This phase is stable
until 400 8C. In the IR spectrum the vibrational bands of the
selenite group are observed. The diffuse reflectance spectroscopy is
consistent with the existence of copper(II) cations with square
pyramidal geometry. The ESR and magnetization measurements
confirm the existence of a magnetic transition from a paramagnetic
to a ferromagnetic state below 55 K, which gives rise to a
ferrimagnetic behaviour, probably due to a non-collinear ordering
of the magnetic moments. The global magnetic interactions at the
lower temperature measured are antiferromagnetic.
[7] (a) M. Koskelinna, L. Niinisto, J. Valkonen, Acta Chem. Scand., Ser. A 30 (1976)
836;
(b) G. Meunier, M. Bertaud, Acta Crystallogr., Sect. B 30 (1974) 2840;
(c) F.C. Hawthorne, L.A. Groat, T.S. Ercit, Acta Crystallogr., Sect. B 30 (1974) 2840;
(d) W.T.A. Harrison, A.V.P. McManus, A.K. Cheetham, Acta Crystallogr., Sect. C 48
(1992) 412.
[8] A. Larran˜aga, J.L. Mesa, L. Lezama, J.L. Pizarro, R. Olazcuaga, M.I. Arriortua, T. Rojo, J.
Chem. Soc., Dalton Trans. (2002) 3447.
[9] A. Larran˜aga, J.L. Mesa, J.L. Pizarro, A. Pen˜a, R. Olazcuaga, M.I. Arriortua, T. Rojo, J.
Solid State Chem. 178 (2005) 3686.
[10] C.N.R. Rao, J.N. Behera, M. Dan, Chem. Soc. Rev. 35 (2006) 375.
[11] H. Effenberger, F. Pertlik, Monatsh. Chem. 117 (1986) 887.
[12] (a) J.L. Pizarro, M.I. Arriortua, L. Lezama, T. Rojo, G. Villeneuve, Solid State Ionics
63–65 (1993) 71;
(b) M.D. Marcos, P. Amoros, D. Beltran, A. Beltran, J.P. Atfield, J. Mater. Chem. 5
(1995) 917;
(c) J.M. Rojo, J.L. Mesa, L. Lezama, J. Rodriguez, J.L. Pizarro, M.I. Arriortua, T. Rojo,
Int. J. Inorg. Mater. 3 (2001) 67;
(d) J.M. Rojo, A. Larran˜aga, J.L. Mesa, M.K. Urtiaga, J.L. Pizarro, M.I. Arriortua, T.
Rojo, J. Solid State Chem. 165 (2002) 171.
[13] J. Rodriguez-Carvajal, Rietveld Pattern Matching Analysis of Powder Patterns,
Unpublisher, 1994.
Acknowledgements
[14] Powder Diffraction File Inorganic and Organic, File 80-1916.
[15] (a) K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds,
Wiley, New York, 1986;
(b) A.S. Povarennykh, L.A. Onischchenko, Geol. Zh. 33 (6) (1973) 98.
[16] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Science, Amsterdam,
Netherlands, 1984.
This work has been financially supported by the ‘‘Ministerio de
´
Educacion y Ciencia’’ (MAT2007-60400/66737-C02-01) and the
‘‘Gobierno Vasco’’ (IT-177-07/312-07). The authors thank the
technicians of SGIker, Dr. I. Orue and Dr. F.J. Sangu¨esa, financed by
the National Program for the Promotion of Human Resources
within the National Plan of Scientific Research, Development and
[17] A. Bencini, D. Gatteschi, EPR of Exchange Coupled Systems, Springer–Verlag,
Berlin, Heidelberg, 1990.
´
Innovation, ‘‘Ministerio de Ciencia y Tecnologıa’’ and ‘‘Fondo Social
[18] R.L. Carlin, Magnetochemistry, Springer, Berlin, Heidelberg, 1986.