the application of Hantzsch procedure.6,7 The methods available
have a number of drawbacks such as the use of anhydrous
Supramolecular Synthesis of Selenazoles Using
Selenourea in Water in the Presence of
8
9
â-Cyclodextrin under Atmospheric Pressure†
solvents, inert atmosphere, basic conditions, longer reaction,
1
0
and low yields in the presence of water. Apart from this,
1
1
selenourea is air and light sensitive. Thus, in view of these
shortcomings, there is a need to develop a mild and ecofriendly
synthetic methodology for these high value compounds by
replacing organic solvents, most of which are flammable, toxic,
or carcinogenic, with water using a recyclable activator as a
M. Narender, M. Somi Reddy, V. Pavan Kumar,
V. Prakash Reddy, Y. V. D. Nageswar, and K. Rama Rao*
Organic Chemistry DiVision-I, Indian Institute of Chemical
Technology, Uppal Road, Hyderabad 500-007, India
1
2
part of green chemical approach.
Water is a cheap, nontoxic, and most readily available reaction
medium, making it an environmentally and economically
1
3
attractive solvent. However, the fundamental problem in
performing reactions in water is that many organic substrates
are hydrophobic and are insoluble in water. In our efforts to
develop biomimetic approaches through supramolecular cataly-
ReceiVed NoVember 24, 2006
14
sis and also to overcome some of the drawbacks in the existing
methodologies for the synthesis of 2-amino-1,3-selenazoles from
R-bromo ketones, we report herein, for the first time, the
aqueous-phase synthesis of selenazoles from R-bromo ketones
and selenourea in the presence of â-cyclodextrin (Scheme 1).
Cyclodextrins are cyclic oligosaccharides possessing hydro-
phobic cavities. They are torus-like macro-rings made up of
Selenazoles were synthesized from R-bromo ketones and
selenourea in the presence of â-cyclodextrin in water at 50
C under atmospheric pressure.
°
4
glucopyranose units. As a consequece of the C1 conformation
of the glucopyranose units, all secondary hydroxyl groups are
situated on one of the two edges of the ring, whereas all primary
ones are placed on the other edge. The C-2-OH group of one
glucopyranoside unit forms a hydrogen bond with C-3-OH group
of the adjacent glucopyranose unit. Thus, the side where the
secondary hydroxyl groups are situated, the diameter of the
cavity is larger than on the side with the primary hydroxyls,
1
Selenazoles have been extensively studied as synthetic tools,
2
as well as for their biological significance. Among them, 1,3-
selenazoles are of pharmacological relevance due to their
antibiotic and cancerostatic activity. A prominent example is
the C-glycosyl selenazofurin with antibacterial activity. 2-Amino-
,3-selenazoles are also good superoxide anion-scavengers. A
3
3a
4
1
number of synthetic routes have been developed for the
selenium-containing heterocyclic compounds because of their
interesting reactivities. These have been prepared mainly by
(
6) (a) Larsen, R. 1,3-Selenazoles. In ComprehensiVe Heterocyclic
Chemistry II; Kartritzky, A., Rees. C. W., Scriven, E. F. V., Eds.; Elsevier
Science: Oxford, 1996; Vol. 3, Chapter 8. (b) Koketsu, M.; Nada, F.;
Ishihara, H. Synthesis 2002, 195. (c) Kaminski, R.; Glass, R. S.; Skowronska,
A. Synthesis 2001, 1308. (d) Koketsu, M.; Fukuta, Y.; Ishihara, H.
Tetrahedron Lett. 2001, 42, 6333. (e) Zhang, P.-F.; Chen, Z.-C. Synthesis
2000, 9, 1219. (f) Maeda, H.; Kambe, N.; Sonoda, N.; Fujiwara, S.-I.; Shin-
ike, T. Tetrahedron 1997, 53, 13667. (g) Lai, L.-L.; Reid, D. H. Synthesis
1993, 870. (h) Ogawa, A.; Miyake, J. I.; Karasaki, Y.; Murai, S.; Sonoda,
N. J. Org. Chem. 1985, 50, 384. (i) Cohen, V. I. Synthesis 1978, 668.
(7) Geisler, K.; Pfeiffer, W.-D.; M u¨ ller, C.; Nobst, E.; Bulka, E.; Langer,
P. Synthesis 2003, 1215.
5
†
IICT communication no. 061226.
(
1) (a) Casar, Z.; Majcen-Le, A.; Marechal; Lorey, D. New J. Chem.
2
003, 27, 1622. (b) Koketsu, M.; Ishihara, H. Curr. Org. Chem. 2003, 7,
1
75. (c) Duddeck, H.; Bradenahl, R.; Stefaniak, L.; Jazwinski, J.; Kamienski,
B. Magn. Resonance Chem. 2001, 39, 709. (d) Archer, S.; McGarry, R. J.
Heterocyclic Chem. 1982, 19, 1245.
(2) (a) Park, Y.-J.; Koketsu, M.; Kim, J. M.; Yeo, J.-H.; Ishihara, H.;
Lee, K.-G.; Kim, S. Y.; Kim, C.-K. Biol. Pharm. Bull. 2003, 26, 1657. (b)
Koketsu, M.; Choi, S. Y.; Ishihara, H.; Lim, B. O.; Kim, H.; Kim, S. Y.
Chem. Pharm. Bull. 2002, 50, 1594. (c) Li, H.; Hallows, W. H.; Punzi, J.
S.; Marquez, V. E.; Carell, H. L.; Pankiewicz, K. W.; Watanabe, K. A.;
Goldstein, B. M. Biochemistry 1994, 33, 23. (d) Goldstein, B. M.; Leary,
J. F.; Farley, B. A.; Marquez, V. E.; Levy, P. C.; Rowley, P. T. Blood
(8) (a) Koketsu, M.; Kogami, M.; Ando, H.; Ishihara, H. Synthesis 2006,
0031. (b) Geisler, K.; Kunzler, A.; Below, H.; Bulka, E.; Pfeiffer, W.-D.;
Langer, P. Synthesis 2004, 0097. (c) Koketsu, M.; Imogawa, M.; Mio, T.;
Ishihara, H. J. Heterocycl. Chem. 2005, 42, 831.
(9) Koketsu, M.; Mio, T.; Ishihara, H. Synthesis 2004, 233.
(10) Koketsu, M.; Tanaka, H.; Ishihara, H. Chem. Lett. 2005, 34, 1260.
(11) Dictionary of Organic Compounds, 6th ed.; Chapman and Hall: New
York, 1995; Vol. 6, p5646.
1
991, 78, 593. (e) Burling, F. T.; Goldstein, B. M. J. Am. Chem. Soc. 1992,
14, 2313.
1
(
3) (a) Goldstein, B. M.; Kennedy, S. D.; Hennen, W. J. J. Am. Chem.
(12) (a) OECD (Organization for Economical Cooperation and Develop-
ment) Workshop on Sustainable Chemistry, 1998. (b) Anastas, P. T.; Warner,
J. C. Green Chemistry: Theory and Practice; Oxford University Press:
Oxford, 1998. (c) Anastas, P. T.; Williamson, T. C.; Hjeresen, D. L.; Breen,
J. J. Promoting Green Chemistry Initiatives, in Environm. Sci. Technol.
1999, 33, 116A-119A.
(13) (a) Jaeger, D. A.; Frey, M. R. J. Org. Chem. 1982, 47, 311-315.
(b) Jaeger, D. A.; Jamrozik, J.; Golich, T. G.; Clennan, M. W.; Mohebalian,
J. J. Am. Chem. Soc. 1989, 111, 3001-3006. (c) Jaeger, D. A.; Sayed, Y.
M.; Dutta, A. K. Tetrahedron Lett. 1990, 31, 449-450.
Soc. 1990, 112, 8265 and references cited therein. (b) Shafiee, A.;
Khashayarmanesh, Z.; Kamal, F. J. Sci., Islamic Repub. Iran 1990, 1, 11.
c) Shafiee, A.; Shafaati, A.; Khamench, B. H. J. Heterocycl. Chem. 1989,
6, 709. (d) For cancerostatic activity of 1,3-selenazoles, see: Srivastava,
P. C.; Robins, R. K. J. Med. Chem. 1983, 26, 445. (e) Also see: Shafiee,
A.; Mazloumi, A.; Cohen, V. J. J. Heterocycl. Chem. 1979, 16, 1563.
(
2
(
4) Sekhiguchi, A.; Nishina, A.; Kimura, H.; Fukumoto, R.-H.; Koichi,
K.; Ishihara, H.; Koketsu, M. Chem. Pharm. Bull. 2005, 53, 1439.
5) (a) ComprehensiVe Heterocyclic Chemistry II; Katritzky, A. R., Rees,
(
C. W., Scriven, E. F. V., Eds.; Pergamon: London, 1996; Vols. 1-11. (b)
Back, T. G. Organoselenium Chemistry: A Practical Approach; Oxford
University Press: Oxford, 1999. (c) Wirth, T. Organoselenium Chemistry.
Modern DeVelopments in Organic Synthesis; Springer: Berlin, 2000. (d)
Ishihara, H.; Koketsu, M.; Fukuta, Y.; Nada, F. J. Am. Chem. Soc. 2001,
(14) (a) Surendra, K.; Krishnaveni, N. S.; Mahesh, A.; Rao, K. R. J.
Org. Chem. 2006, 71, 2532. (b) Krishnaveni, N. S.; Surendra, K.; Rao, K.
R. Chem. Commun. 2005, 669. (c) Surendra, K.; Krishnaveni, N. S.; Reddy,
M. A.; Nageswar, Y. V. D.; Rao, K. R. J. Org. Chem. 2003, 68, 2058. (d)
Krishnaveni, N. S.; Surendra, K.; Reddy, M. A.; Nageswar, Y. V. D.; Rao,
K. R. J. Org. Chem. 2003, 68, 2018.
1
23, 8408.
1
0.1021/jo062421q CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/01/2007
J. Org. Chem. 2007, 72, 1849-1851
1849